
FOUNDATION SERVER
DEVELOPER’S GUIDE

Important Notice
Chordiant and the Chordiant logo are registered trademarks of Chordiant Software,
Inc. with patents pending.

Copyright © 1997-2005 by Chordiant Software, Inc. All rights reserved.

This document is Chordiant Confidential Information intended for the exclusive use of
Chordiant Software, Inc., its affiliates, and its customers and partners. No part of this
publication may be reproduced, revised, stored in a retrieval system, or transmitted, in
any form or by any means, mechanical, electronic, photocopying, recording, or
otherwise, without prior written permission of Chordiant Software, Inc. No licenses,
express or implied, are granted with respect to any of the technology described in this
document.

Trademark Acknowledgments
BEA and WebLogic are registered trademarks of BEA Systems, Inc. FioranoMQ is a
registered trademark of Fiorano, Inc. IBM and WebSphere are registered trademarks
of IBM Corporation. Microsoft and Windows are registered trademarks of Microsoft
Corporation. Oracle is a registered trademark of Oracle Corporation. Sun, Sun ONE
Directory Server, and J2EE are registered trademarks of Sun Microsystems, Inc.

Nokia is a registered trademark of Nokia Corporation. Nokia's product names are
either trademarks or registered trademarks of Nokia.

The product name of Sony Ericsson product is a trademark or other protected right
used by Sony Ericsson.

All other company or product names may be trademarks or registered trademarks of
the respective companies with which they are associated.

Publishing Information
Chordiant 5 Foundation Server Developer’s Guide
Release 5.7. Document version 1.0 February 2005

Please email suggestions and corrections to tech_com_ww@chordiant.com.

World Headquarters
Chordiant Software, Inc.
20400 Stevens Creek Blvd.
Cupertino, CA 95014
1-408-517-6100
Fax: 1-408-517-0270
www.chordiant.com

European Headquarters
Chordiant Software Int’l, Inc.
2 Goat Wharf, High Street
Brentford, Middlesex
TW8 0BA, UK
+44(0) 20 8380 0600
Fax: +44(0) 20 8380 0606

Customer Support
Americas:
us.support@chordiant.com
1-408-517-6200
Toll-free: 1-877-866-7243
EMEA:
+44 (0) 20 8580 0400
uk.support@chordiant.com

mailto:tech_com_ww@chordiant.com

Contents
Preface .. xi

Chapter 1 Introduction ... 1

Important Chordiant 5 Foundation Server Concepts ... 2
Chordiant 5 Foundation Server Features and Advantages ... 3
Foundation Server Component Interactions .. 4

Additional Components and Concepts ... 5
Chordiant 5 Foundation Server Development .. 7

Chapter 2 Understanding JX Architecture .. 9

Enterprise Services Topology ... 9
Enterprise Services Detail ... 10

Web Application Component Detail.. 11
Service and Web Application Component Topology ... 12
Deployment Model .. 13
JX Client Application Components ... 14
Exchanging Information through Payload .. 15
Chordiant Persistence Server ... 18
Single-Bean Architecture .. 19
Transactions with the JX EJB .. 20

Background Information ... 20
Bean Managed Transactions .. 20
BMT Deployment ... 22
Container Managed Transactions .. 22
CMT Deployment .. 24
CMT “trans-attribute” Options .. 25

Message Driven Beans .. 25
Startup Order of Beans .. 26

Chapter 3 Life Cycle of a Foundation Server Application .. 29

Client Application Startup and Shutdown .. 29
Thick Client Application.. 29
Thin Client Applications.. 30

Thick Client to Service Interactions ... 30
Service to Service and Thin Client to Service Interactions ... 32
Service to Client Interactions .. 33

Thick Client Scenario.. 33
Thin Client Scenario ... 35
iii

Chapter 4 Managing State in JX Services .. 37

Stateless Service .. 37
Multi-Instance Model ... 38
Multi-Instance, Central Persistent Model.. 39

Stateful Services ... 40
Single Instance, Multi-Threaded Model .. 41
Single-Instance, Multi-Threaded, Persistent Model .. 43
Multi-Instance, State Propagated Model ... 44

Chapter 5 Chordiant 5 Foundation Server Helpers ... 45

StaticHelper .. 45
ConfigurationHelper ... 46

Configuration Refreshing .. 47
LogHelper ... 47

Logging Interfaces .. 48
Error ... 48
Warning ... 49
Info ... 49
Debug ... 49
MethodEntry / MethodExit ... 49
Performance .. 50

Logging Configuration... 53
Creating a New LogFilter ... 56
Criteria Details ... 56
Redundant Levels .. 57
Redundant Filters .. 57
Creating a New LogWriter ... 57
Changing Logging Configuration ... 58
Production Environment Settings ... 58

Calling the LogHelper.. 59
Log File Output ... 59

Multi-Threaded Logging .. 60
GatewayHelper .. 60
ClientAgentHelper ... 61
Security Service .. 61
CustomObjectHelper ... 62

Chapter 6 Chordiant 5 Foundation Server Administration ... 63

Monitoring the Chordiant 5 Foundation Server System .. 63
Using the Administrative Console ... 66

Service Control API ... 67
Service Control through the Command Line .. 67
Security and the Administrative Console .. 69

Behavior of Services within the Administrative Console ... 69
Standard Behavior ... 69
iv Foundation Server Developer’s Guide, release 5.7

Actual Behavior of Chordiant-Provided Services ... 70
Multiple Application Server JVMs and SocketGatewayService .. 85

Configuring a Cluster Environment for Use with the Administrative Console 88
Exceptions and Error Handling ... 92

Chapter 7 Configuration Files ... 95

Chordiant XML Configuration File Style ... 96
Master Configuration Files ... 97

components/{component}.xml ... 98
sitemaster.xml.. 99
{nodename}.xml... 99
master.dtd .. 99

Referencing master.dtd ... 100
ConfigurationHelper .. 101

Adding Components through Configuration .. 101
Auditing for Performance ... 105

distributedaudit .. 105
Auditing and Debugging Transactions ... 109

Chapter 8 Creating Foundation Server Components .. 111

Building an Application .. 111
Customization Philosophy .. 112
Generating Java Components from Design Tools.. 112
Javadoc ... 112
Example Code ... 112

Building a Service .. 112
Business Service Structure ... 113
Creating a Service ... 114
Exceptions .. 118
Locking ... 118
Accessing Data Stores... 118
Server-Side Business Object Behavior.. 118
Transactions in Chordiant Foundation Server ... 118

Transaction Control Mechanism ... 119
Rollbacks .. 122

Configuring for Rollbacks .. 122
Configuring SmartStubs .. 124

Creating Your Own Smartstub Type .. 127
Creating Another EJB Deployment ... 129

Integrating with Chordiant Services ... 131
Using Web Services ... 133

Web Services Security .. 133
Building a Client Agent .. 134

Client Agent Structure ... 134
Creating a Client Agent ... 135
Contents v

Passing Payload with PayloadData ... 140
Supported Data Types ... 141

Additional Types of Client Agents... 142
XML Client Agent .. 143
Generic SOAP Servlet .. 146

Accessing Services without Client Agents .. 149
Using J2EE to Call the Foundation Server EJB .. 149
Using the Foundation Server SocketGatewayService .. 151

Configuring the Gateway Service... 154
processRequest Method: Client Agent vs. Service... 156
ClientAgentHelper ... 156

Building the Client Application ... 157
Implementing a Callback .. 159
Implementing a Service to Service Call .. 166
Chordiant Resource Manager .. 170

Resource Manager Configuration .. 171
Configuring for Multiple Data Sources .. 174

Using the Factory Methods ... 175
CustomObjects and the CustomObjectHelper ... 176

CustomObject Requirements and Features... 177
CustomObjectHelper.. 177

Configuring CustomObjects ... 177
Managing CustomObjects .. 178

The ServiceControl Interface... 179

Chapter 9 Chordiant Persistence Server .. 181

The Development Cycle .. 183
Persistence Server Process Flow ... 185

Data Accessor Overview ... 187
Interface Notation ... 188

Points ... 189
Sets ... 190
Rays .. 190
Segments ... 191

Data Access Methods ... 192
Performance Tip for Updating Data ... 193

Global Unique Identifier (GUID) Generation... 194
Specifying the GUID .. 195
Business Object Criteria .. 196

Optimistic and Pessimistic Locking ... 197
Optimistic Locking .. 198
Pessimistic Locking .. 199

Optimistic and Pessimistic Locking in One Model.. 200
Caution: Two Locking Strategies on Same Data ... 202
Optimistic and Pessimistic Locking API .. 203
vi Foundation Server Developer’s Guide, release 5.7

Examples of Optimistic and Pessimistic Locking ... 205
Order By Interface... 207
Count Interface.. 210
Performing Transactions.. 211

Creating Bean Managed Transactions .. 211
Performing Container Managed Transactions .. 215

Performing Joins ... 215
CLOB Support ... 218

The Resource Manager and Persistence ... 219
The Lock Manager ... 222

Configuring the Lock Manager .. 223
Client Interface to the Lock Manager... 224

Data Type Support ... 225
Understanding Object to File Support ... 226

Configuring WebSphere MQ Persistence ... 228
Example of Using Persistence Server .. 231
Chordiant Persistence Server and XSL Stylesheets ... 233

Chapter 10 Chordiant Event Server ... 239

Event Server Components .. 239
Understanding the Execution Flow ... 242

Outbound Messages .. 242
Inbound Messages ... 244
Security and Inbound Messages .. 245
Errors and Inbound Messages ... 245

Directing Outbound Messages to Queues and Topics ... 246
Accessing Messages in Queues and Topics ... 251

Creating Additional MDBs.. 251

Chapter 11 Security .. 253

Security Elements ... 254
Authentication... 254
Authorization .. 255

Levels of Security and Principal Identifiers ... 255
Objects Under Security Control ... 256
Access Control Lists and Entities .. 257
Security Resolution .. 259

Special Objects... 262
Special User ... 262
Special Roles ... 262
Special Object .. 262
Security Access to Non-Existent Objects .. 263

Security Architecture ... 264
Using the Security Manager Service ... 266

APIs for Authenticating Users .. 267
Contents vii

APIs for Authorizing Users ... 268
Managing Access Control Lists and Entities .. 269
Managing Business Services as Resources .. 270

Adding a New Service as a Resource .. 271
Configuring SecurityManager.xml .. 271
Synchronizing Cache Across Clusters with JMS ... 274
System Security .. 274
Understanding Interactions Between Security Manager and Authentication Handler 275

Creating an Authentication Token... 275
Validating an Authentication Token.. 276

Customizing the Authentication Handler .. 277
Customizing the Authentication Token .. 282

Migrating Existing Security Configurations .. 282

Chapter 12 Request Server .. 283

The Main Components .. 284
The Execution Flow ... 285
Understanding Request Context Mapping .. 290

Application Logic and Presentation Resources.. 290
Exploring the Request Context Map.. 291
Request Context Mapping Execution Flow .. 293
Understanding Selectors and the Selectors Helper.. 296

Exploring the Parts of a Selector .. 297
Deferred Presentation Resource Mapping ... 299
Building Selectors .. 300

Understanding the Selectors Helper .. 303
HashTable Examples ... 304

Understanding the Device Context Mapper Helper.. 304
Exploring the Primary Classes ... 305

Using the ChordiantServletBaseClass ... 307
Using the Session Helper ... 310
Using the Login Helper.. 311

Understanding Application Logic Results ... 312
Examining the XML Instance Document .. 313

Understanding Exception Handling ... 313
Building Web Applications .. 316

Understanding Developer Goals .. 317
Example of Building an Application Logic Resource.. 319

Integrating Foundation Server with Chordiant Interaction Server .. 326

Chapter 13 Network Presence .. 329

Contents of the Network Presence in the Browser ... 329
Establishing a Network Presence .. 330

Register and Deregister Requests... 330
The Applet HTML Frame .. 332
viii Foundation Server Developer’s Guide, release 5.7

JavaScript-Function Event Handlers.. 334
Serialized Events .. 335

Payload Data.. 336
MSXML Parser .. 337

Security and Network Presence ... 338
Browser Security ... 338

Choosing a Signed Network Presence Plug-In .. 339
Modifying the java.policy File ... 340
Additional Scenarios Requiring Security Privileges ... 342

Index ...343
Contents ix

x Foundation Server Developer’s Guide, release 5.7

Preface
This manual describes the architecture and design disciplines of the Chordiant 5 Foundation
Server. It also describes how to develop applications using Chordiant 5 Foundation Server, and
how to administer security for applications running in this environment.

Who Should Use this Manual

This manual is intended for Chordiant Application Developers and System Integrators who need
to define and develop applications using the Chordiant 5 Foundation Server.

Manual Organization

This manual contains the following chapters:

Chapter 1 Provides an introduction to the Chordiant 5 Foundation Server, and describes
the important features and concepts of the JX Architecture.

Chapter 2 Describes the architecture of the Chordiant 5 Foundation Server, and
provides a detailed explanation of the major components of the system. This
chapter includes a description of the single-bean architecture and
transactions within the JX EJB.

Chapter 3 Describes the life cycle of a Foundation Server application.

Chapter 4 Describes managing state in JX services, including stateless and stateful
models.

Chapter 5 Describes Chordiant 5 Foundation Server helpers, including LogHelper,
ConfigurationHelper, GatewayHelper, StaticHelper, and ClientAgentHelper.

Chapter 7 Describes configuration files and configuring Chordiant 5 Foundation Server.

Chapter 6 Describes monitoring the system through the Administrative Console, as well
as exceptions and error handling.

Chapter 8 Describes how to build a distributed application using Chordiant 5 Foundation
Server, including creating services and client agents. Also discusses web
services, transactions, smartstubs, and the Resource Manager.

Chapter 9 Describes Chordiant Persistence Server and how to add persistence features
to your business services.

Chapter 10 Describes how to use the Chordiant Event Server for asynchronous
messaging in Foundation Server applications.

Chapter 11 Describes the security architecture of Chordiant 5 Foundation Server.
xi

Additional Documentation

For more information on Chordiant 5 Foundation Server, refer to the following documents:

• Chordiant 5 Foundation Server Customization Guide — Contains information on customizing
Chordiant 5 Foundation Server.

• Chordiant 5 Foundation Server Application Components Developer’s Guide — Contains information
on working with application components, including service framework components, web
services components, and persistence components.

• Chordiant 5 Performance Guide — Contains tuning and performance information.

For definitions of Chordiant terms, refer to the Chordiant 5 Terminology Guide.

Chapter 12 Describes the Request Server used for web applications, including how to
build web applications.

Chapter 13 Describes Network Presence and its role in working with thin clients.
xii Foundation Server Developer’s Guide, release 5.7

Typographical Conventions

This section explains how to interpret the font changes and notes that you see in this manual.

Note: A note shows important information that you should be sure to read. Many notes
refer to other sections for more information.

Tip: A tip gives suggestions on how you can use the application faster or more
efficiently.

Caution: A caution statement warns of steps you should take, or avoid, so you do not
damage your equipment, data, or system reliability.

CONVENTION EXAMPLE

System filenames and pathnames Readme.txt is a text file that is stored on the
application server in the /etc (for UNIX) or
C:\ (for Windows NT) directory.

Document names and module names See the “Security” section within the Ongoing Tasks
document, or the online help from within the
Security module.

Names of code elements and small pieces of code
- or -
Onscreen text and text typed on the keyboard

Use the getInfo method

Type the password cmyk.

Screen element labels, including buttons and menus
- or -
Keys that you press on the keyboard

Click OK. Then from the File menu, select Save.

To save the information on the page, press CTRL +
SHIFT + s.

Variables that you must define based on your own
settings

{JAVA_HOME}/com/chordiant/jxw

Gray boxes show code to be entered or viewed.
Preface xiii

xiv Foundation Server Developer’s Guide, release 5.7

Chapter 1
Introduction
Chordiant 5 Foundation Server is a set of distributed components that work together to provide
an execution environment for eBusiness applications. Using Chordiant 5 Foundation Server, you
can create distributed multi-channel, multi-datastore, and data-driven eBusiness applications
based on open standards that can be adapted for future technologies.

Chordiant 5 Foundation Server enables you to build services that access back-end data stores, and
to present those services to client applications, including those based on both thick and thin client
models.

Figure 1-1: Chordiant 5 Foundation Server Overview

While Chordiant 5 Foundation Server offers a powerful and scalable application development
environment, it is important to note that Chordiant 5 Foundation Server does not include any
surrounding eBusiness applications.
1

Important Chordiant 5 Foundation Server Concepts
IMPOR TANT CHORDIANT 5 FOUNDATION SER VER
CONCEPTS

There are several concepts that form the basis of the architecture used within the Chordiant 5
Foundation Server. The JX Architecture is so named because it is based on J2EE and XML
specifications.

Table 1-1 describes these concepts in the context of the Chordiant Software system and the
Chordiant 5 Foundation Server.

CONCEPT DESCRIPTION

eBusiness
applications

A set of software programs running on one or more
computers, accessed by multiple users through a range of
touch-points (channels).

Multi-channel The capability of enabling access to eBusiness applications
using a range of client entities including web browsers,
wireless devices, desktop applications, and more.
Multi-channel also includes access through peer system
entities such as IVR/VRU systems, fax/email systems, as
well as other external systems.

Multi-datastore The ability for an eBusiness application to have consistent
access to business data residing in the following locations:
relational data stores, legacy application data stores,
document management data stores, file system data stores,
and more.

Data-driven The ability to modify the behavior of an eBusiness
application by manipulating data and meta-information
instead of source code.

Distributed An execution environment that enables eBusiness
applications to run on multiple computers thereby offering
scalable performance.

Vertical scaling The ability to add service replicates on a given computer to
achieve higher request throughput.

Horizontal scaling The ability to add computers, and thereby add service
replicates, to achieve higher request throughput.

Table 1-1: Important Chordiant 5 Foundation Server Concepts
2 Foundation Server Developer’s Guide, release 5.7

Chordiant 5 Foundation Server Features and Advantages
CHORDIANT 5 FOUNDATION SERVER FEATURES AND
ADVANTAGES

Chordiant 5 Foundation Server offers a framework built on the J2EE application model. Chordiant
5 Foundation Server enables you to rapidly create distributed eBusiness applications by providing
a level of abstraction on top of the J2EE architecture, making it easier to build services and expose
them to clients.

Figure 1-2 illustrates the standard J2EE application model. Within this application model, you
create JX services that run as Enterprise Java Beans, which reside in the application server (an
Enterprise Java Bean Container).

Figure 1-2: The J2EE Application Model

Within the Chordiant 5 Foundation Server, services implement a well-defined interface that
embodies enterprise business logic. Enterprise business logic consists of transactions, data access,
interactions with peer services, business logic, and rules.

Building a service using Chordiant 5 Foundation Server involves subclassing a JX base class, and
writing the custom Java code. Unlike programming to the J2EE application model, however, you
do not need to employ an Enterprise Java Beans (EJB) compiler, nor consider the specific
application server to which you plan to deploy.

Business services perform data access using Chordiant Persistence Server (Persistence). Chordiant
Persistence Server saves you from having to interact with a specific database interface directly. It
handles the interaction with data and legacy systems for you. In contrast, when programming
using the J2EE application model, you are responsible for directly programming to the database
interface, such as JDBC.

Likewise, Chordiant 5 Foundation Server does not require you to expose your service interface
directly to clients. Instead, Chordiant 5 Foundation Server uses a client agent to which you expose
your interfaces. This means that you do not need to perform client binding or deployment for
the EJB.
Chapter 1: Introduction 3

Foundation Server Component Interactions
Chordiant 5 Foundation Server also offers a single distributed interface coupled with a transform
technology that enables components within the distributed application, including clients and
servers, to exchange information in a seamless fashion using an extensible, XML-based payload.
Because the payload is XML-based, you can extend its data structure without having to rebuild
the distributed interfaces.

FOUNDATION SER VER COMPONENT INTERACTIONS

Chordiant 5 Foundation Server employs a layered software architecture that includes
well-defined interactions between components such as the client application, the client agent, the
service, the data access component (Chordiant Persistence Server), and finally, the underlying
data store.

Figure 1-3 shows the Chordiant 5 Foundation Server application architecture, illustrating the
multi-layered structure of the software system.

Figure 1-3: Chordiant 5 Foundation Server Component Interactions

Table 1-2 describes the major components of Chordiant 5 Foundation Server.

COMPONENT DESCRIPTION

Client Application The client application that, in many cases, is responsible for displaying
information and accepting user input.

JX Client Agent A proxy to the services on the server, enabling the client application to
access the service’s functionality.

Table 1-2: Chordiant 5 Foundation Server Components
4 Foundation Server Developer’s Guide, release 5.7

Foundation Server Component Interactions
Additional Components and Concepts

Chordiant 5 Foundation Server includes several additional components and concepts that ease the
development of distributed applications. Table 1-3 describes these components and concepts.

JX Service Embodies the business logic and data access requirements of the
application. Services run on the application server, typically reside in the
middle tier, and can be stateful or stateless. You implement services
using Java by subclassing a known class and implementing a known
interface. Services can be single- or multi-threaded.

Chordiant
Persistence
Server
(data access
component)

An abstraction of the data manipulation features available to the service.
The Chordiant Persistence Server component implements the standard
CRUD (Create, Retrieve, Update, Delete) operations, and uses an
underlying data interface, such as JDBC, Java Connect Architecture (JCA)
or MQ, to interface with the specific data store.

Data Store The underlying data storage system. Examples of data stores include
RDBMS databases, legacy applications and flat files.

ITEM DESCRIPTION

Callback A feature that enables the server to call the client application. Typical
uses include enabling a service, such as workflow, chat, or email to
notify the client about some event. The callback feature is implemented
as part of the GatewayHelper’s capabilities

GatewayHelper Provides a network addressable mechanism for software components to
call the client application. The GatewayHelper therefore enables services
to perform a callback to client applications.

Note that all interactions in a typical J2EE application are initiated from
the client to the server. Using the Chordiant 5 Foundation Server,
however, you can have the server spontaneously initiate a callback to the
client application. This enables the server to offer notifications to the
client without requiring the client to poll the server.

Table 1-3: Additional Components and Concepts

COMPONENT DESCRIPTION

Table 1-2: Chordiant 5 Foundation Server Components (Continued)
Chapter 1: Introduction 5

Foundation Server Component Interactions
Servlets and JSPs In the Chordiant 5 Foundation Server, you can use servlets to extend a
server’s functionality. Servlets are written in Java, and run on the web
server. Unlike services, servlets represent the application and not the
business logic. Typically, servlets and JSPs output HTML to HTTP clients,
such as web browsers or wireless phones.

Chordiant 5 Foundation Server also offers the infrastructure enabling
servlets or JSPs to output XML, which is transformed using XSL
stylesheets to either HTML or other specific renderings, such as WML.
The advantage of this approach is that it enables you to reuse application
logic over multiple channels, such as web browsers and wireless phones.

Servlets and JSPs interact with client agents to access business logic
services.

Stylesheets XSL-based information that provides the styling for XML output,
interpreted using a transform engine. Stylesheets enable channel- and
device- (context) specific rendering of generated information.

ITEM DESCRIPTION

Table 1-3: Additional Components and Concepts (Continued)
6 Foundation Server Developer’s Guide, release 5.7

Chordiant 5 Foundation Server Development
CHORDIANT 5 FOUNDATION SERVER DEVELOPMENT

Figure 1-4 shows the components that you can build with Chordiant 5 Foundation Server.

Figure 1-4: Components Developed with Chordiant 5 Foundation Server

4

WAP
Device

HTML/HTTP
Client

Browser
with Java
Plug-in

Web Servers
(JX Web Server
Infrastructure)

HTTP

Desktop
Client (Fat)

(Java and non-Java)

J2EE
Application

Server

Application
server

replicates

JX services
EJB

EJB

EJB
Container

J2EE
Application

Server

EJB
EJB

EJB
Container

Application
server

replicates

JX services

Client requests distribute
among available

application server and JX
service replicates

EJB
EJB

EJB
Container

EJB
EJB

EJB
Container

Peer System/
Application

(Java and non-Java)

1

1

2

1

3

2

1. Client Agents
2. Services
3. Servlets
4. Stylesheets/XSL
Chapter 1: Introduction 7

Chordiant 5 Foundation Server Development
8 Foundation Server Developer’s Guide, release 5.7

Chapter 2
Understanding JX Architecture
Before you begin working with Chordiant 5 Foundation Server, you should understand the JX
architecture. This chapter introduces the JX architecture, its main components and technologies,
and the interaction between clients and services running on application servers.

ENTERPRISE SERVICES TOPOLOGY

Figure 2-1 illustrates the service topology supported by Chordiant 5 Foundation Server.

Figure 2-1: Service Topology

The service topology supported by the Chordiant 5 Foundation Server comprises:

• One or more J2EE application servers

Each physical server can host multiple application server replicates, which are the containers
for the JX services, running as Enterprise Java Beans.

• Clients

These include thick desktop clients and peer systems running dedicated applications.
9

Enterprise Services Detail
Using multiple servers, Chordiant 5 Foundation Server enables you to create a robust,
fault-tolerant, and load-balanced execution environment for business applications. The system
distributes client requests among application servers and JX application service replicates.

ENTERPRISE SERVICES DETAIL

Services within the Chordiant 5 Foundation Server run as Enterprise Java Beans within an EJB
container (EJB Containers are application server replicates). Figure 2-2 illustrates the relationship
between a JX service, the JX infrastructure, and the EJB container.

Figure 2-2: Enterprise Services Detail

Using Chordiant 5 Foundation Server, you implement custom services which are Java classes.
This is in contrast to the procedure for developing a conventional EJB, which requires you to
compile and deploy the EJB to a J2EE application server when adding a new service or changing
service interfaces.

Since Chordiant 5 Foundation Server relies on a single EJB hosting all services running as Java
classes, you can introduce new services without having to reconfigure the EJB. Also, since the
service is simply an implementation of a Java class, you can develop, test, and run the class
independently of J2EE. Additionally, the Chordiant 5 Foundation Server leverages the bean pool
and thread pool model of J2EE.

For more information about the JX architecture and EJBs, refer to “Single-Bean Architecture” on
page 19.
10 Foundation Server Developer’s Guide, release 5.7

Enterprise Services Detail
Web Application Component Detai l

Figure 2-3: Web Application Component Detail

The web container facilitates:

• HTTP server

• JSP/Servlet runner

You can have the HTTP server and JSP/Servlet runner execute separately from the EJB container,
for example Apache or Tomcat. Alternatively, you can combine the JSP/Servlet runner with the
EJB container. This is a deployment decision based on the specific J2EE application server that you
are using.
Chapter 2: Understanding JX Architecture 11

Service and Web Application Component Topology
SERVICE AND WEB APPLICATION COMPONENT TOPOLOGY

Figure 2-4 illustrates the service and web application component topology supported by
Chordiant 5 Foundation Server.

Figure 2-4: Service and Web Application Component Topology

The Service and Web Application component topology supported by the Chordiant 5 Foundation
Server comprises:

• One or more J2EE application servers

Each physical server can host multiple application server replicates, which are the containers
for the JX services, running as Enterprise Java Beans.

Application servers also handle JNDI, Java Messaging Service (JMS), Java Transaction API
(JTA), Java Management Extensions (JMX), and connection pooling.

• One or more web servers

The web server hosts the Request Server, responsible for interacting with thin clients and
serving as a bridge to the application servers.

Note: Normally, the J2EE application server serves as the EJB and web container.

• Load Balancer

One or more load balancers distribute incoming requests among HTTP servers.

• Clients

These include HTML-based clients, browsers (optionally with Java plug-in), and mobile thin
clients, such as wireless devices.
12 Foundation Server Developer’s Guide, release 5.7

Deployment Model
Similar to the conventional JX application model, described in “Enterprise Services Topology” on
page 9, multiple servers enable the Chordiant 5 Foundation Server to offer a robust, fault-tolerant,
and load-balanced execution environment for business applications. The system distributes client
requests among application servers and JX application service replicates.

Web development is described in Chapter 12, “Request Server”, and in the CAFE and Chordiant
Interaction Server documentation sets.

DEPLOYMENT MODEL

This section contains a brief discussion of the Chordiant 5 Foundation Server deployment model.
For more in-depth information, refer to the Chordiant 5 Performance Guide or consult your
Chordiant representative.

Descriptions of the various components used in these deployment scenarios are described after
Figure 2-4 on page 12. In these scenarios, note that you receive performance benefits when
components run in the same address space (the same OS level process). There might, however, be
drawbacks. These issues are discussed as they apply to each scenario.

Scenario 1: The JSP/Servlet Runner (the web container) is separate from the EJB runner (the EJB
container).

Figure 2-5: Scenario 1—All Components on Separate OS Processes and Separate Machines

You can run two instances of the application server—one to run the JSPs and Servlets and one to
run the EJBs. This deployment model is typically chosen to separate the processing power
required for the “application tier” from the processing power required by the “services tier”.

Scenario 2: The HTTP Server, JSP/Servlet Runner and EJB runner all run in the same OS process.

Figure 2-6: Scenario 2—Many Components Combined on One OS Process and One Machine
Chapter 2: Understanding JX Architecture 13

JX Client Application Components
This scenario is useful for development because everything is running in one OS process. This
makes it easy to manage. This is a good setup for trying out your code in a deployment setting.

Scenario 3: The JSP/Servlet Runner and the EJB Runner are in the same OS process, but the HTTP
server is kept separate.

Figure 2-7: Scenario 3—JSP/Servlet Runner and EJB Runner Combined on One OS Process and One Machine

This scenario is typically the most common and optimizes JSP/Servlet to EJB communications.

JX CLIENT APPLICATION COMPONENTS

Chordiant 5 Foundation Server offers several application components you can use to develop both
graphical and non-graphical client applications, as illustrated in Figure 2-8.

Figure 2-8: JX Client Application Components, running within the Java Virtual Machine

• GatewayHelper — This component enables a network presence for the client agent and client
application, thus enabling a callback mechanism for the client agent and client application.
The GatewayHelper automatically registers with the name service of the application server,
and runs inside the client process. The client application is responsible for activating and
deactivating the GatewayHelper as appropriate. In a thin client, the GatewayHelper runs as a
Java applet.
14 Foundation Server Developer’s Guide, release 5.7

Exchanging Information through Payload
• SecurityManager — The client application uses the SecurityManager to receive
authentication before it can gain access to distributed resources. For example, the client
application must complete authentication before communicating with a client agent. Upon
doing so, the client application receives an authentication token back from the
SecurityManager, which it uses to contact Chordiant’s business services. When an application
issues a call to the client agent, it passes the authentication token as one of the parameters. The
JX infrastructure uses this token to determine access rights to the called service. You use the
Chordiant 5 Foundation Server Administration Manager tool to configure the security
information. For more information on security, refer to Chapter 11, “Security”.

• Client Agent — Client agents serve as proxies to services, and are used by both client
applications trying to contact services and by services trying to contact other services. The
services then perform the desired work.

To the client application, the JX client agent presents itself as a simple Java class with an
arbitrary API. All remote features are hidden from the client application.

A client agent is a subclass of the ClientAgentBaseClass that might implement the
processCallback interface. Each client agent features individual network addressability
through the GatewayHelper, assuming it has been enabled. This enables callbacks to be
addressed to individual client agents.

In addition to acting as a proxy to the services, client agents also fill the following roles:

— Client agents contain implementations of callbacks.

— Client agents are proxies for themselves. During a callback, they call their
implementations to execute remotely on the application side.

• ClientAgentHelper — Vends a client agent to the client application, which is the only way
that a client application can call a distributed service using the Chordiant 5 Foundation Server.
You configure client agents using the Chordiant 5 Foundation Server configuration
component. The ClientAgentHelper then locates the client agent configuration and creates a
new client agent.

EXCHANGING INFORMATION THROUGH PAYLOAD

Chordiant 5 Foundation Server uses an extensible, XML-based or Java-object-based payload,
coupled with transform technology, to offer a single distributed interface that enables components
within the distributed application to exchange information in a seamless fashion. Once loaded, the
payload can be passed to the services in one of three formats:

• A Java Object Graph (as qualified below)

• An XML document

• A String (java.lang.String)
Chapter 2: Understanding JX Architecture 15

Exchanging Information through Payload
In the case of a Java Object Graph, the graph must contain supported data types (see “Supported
Data Types” on page 141) and each object in the graph must be serializable. A Java Object Graph
can be arbitrarily deep, but must not contain circular references. Figure 2-9 illustrates a Java Object
Graph and the equivalent XML Tree.

Figure 2-9: Mapping Object Trees to XML Trees

Using a client agent together with an extensible communication payload means that you do not
need to recompile your applications when making changes to the type of information exchanged
between the client and the server.

Figure 2-10: Transferring the Payload

In a typical J2EE application, on the other hand, the client interacts directly with the EJB. In
addition, J2EE employs a strongly typed interface that requires recompiling when changes are
made.
16 Foundation Server Developer’s Guide, release 5.7

Exchanging Information through Payload
Note that the payload could be perceived differently in the client and the server. For example,
because of the transforms involved, the client might pass an XML document containing a
tree-structured representation of data. Meanwhile, the service could instead be configured to
receive Java Object Graphs. The transform technology enables the service to receive the data in a
format convenient for its purposes.

Figure 2-11: Distributed Business Data

The JX EJB has an interface, called processRequest, that expects object graphs or XML data. For
information on processRequest, refer to “Building a Service” on page 112, “Building a Client
Agent” on page 134, “Accessing Services without Client Agents” on page 149, and
“processRequest Method: Client Agent vs. Service” on page 156.

processRequest requires that payload data be at the top of the object graph or, for XML, payload
data must be at the root level. For more information on payload data, refer to “Passing Payload
with PayloadData” on page 140.
Chapter 2: Understanding JX Architecture 17

Chordiant Persistence Server
CHORDIANT PERSISTENCE SERVER

The Chordiant Persistence Server component is the means by which business services perform
persistence operations, enabling applications to store and receive data from common data stores,
including RDBMS, WebSphere MQ, Java Connect Architecture (JCA), CICS, and IMS. The
Persistence Server component offers an XML-based meta model, a set of object-oriented design
tool plug-ins, an extensible code generator, and advanced plug-in connectors. For more
information, see “Chordiant Persistence Server” on page 181 and the Business Component
Generator section of the Chordiant 5 Foundation Server Application Components Developer’s Guide.

Figure 2-12 illustrates the logical representation of the Persistence Server layer.

Note: In a deployed model, the Persistence Server, EJBs, and servlets all typically reside
in the same JVM.

Figure 2-12: Logical Representation of Persistence Server Architecture
18 Foundation Server Developer’s Guide, release 5.7

Single-Bean Architecture
SINGLE-BEAN ARCHITECTURE

Chordiant 5 Foundation Server is based on a single-bean architecture. The JX bean is just like any
other stateless session EJB and can co-exist and interact with any other EJBs you might have.

The JX single-bean, single-interface architecture is simple and powerful. With it, you can create
and change services and data without affecting the distributed interface. Once you have
integrated with the JX architecture, you have access to all JX services, including additional JX
services you might create.

Communication

You can communicate between the JX EJB and other EJBs through JNDI lookup and standard
bean-to-bean communications. The interface that you can access from the external EJB can be
XML, object-oriented, or typed object-oriented. Once you are communicating with the JX EJB, you
have access to all of the related JX services.

Services

JX services are Java classes that run as attributes of the JX EJB. Depending on the configuration,
several (or all) services run as individual instances under each JX EJB instance. The JX EJB acts as a
dispatcher for the services. A JX service essentially runs as an EJB, including having all EJB
interfaces (like ejb_create and ejb_passivate) forwarded to it.

Pooling

The JX EJB can be pooled just like any other EJB. The underlying services are also pooled along
with the JX EJB pools.

Assume that you have a single replicate (JVM) of the Application Server that includes a JX EJB,
defined to be in a bean pool of 10. Within the JX XML configuration file, you have also defined two
services: Service A and Service B.

In this case, there is a total of 30 class instances running in the single Application Server replicate,
partitioned as:

— 10 instances of Foundation Server EJB (since bean pool size defined to be 10)

— 10 instances of Service A (run as instances under each Foundation Server EJB)

— 10 instances of Service B (run as instances under each Foundation Server EJB)

Note: There are other possible deployment configurations such as node-specific services
and singleton services, but this example is the most basic (and most
recommended) stateless service deployment configuration.
Chapter 2: Understanding JX Architecture 19

Transactions with the JX EJB
SessionContext

Since JX services run as EJBs, they also have a SessionContext attribute, just like an EJB. The
SessionContext attribute is available to the JX service for general purpose use, such as obtaining a
user transaction within a Bean Managed Transaction (BMT) service.

Transactional Disposition

The JX EJB is a SessionBean that is deployed as both a Bean Managed Transaction (BMT) and a
Container Managed Transaction (CMT). For more information on transactions, see “Transactions
with the JX EJB” on page 20.

TRANSACTIONS WITH THE JX EJB
In Chordiant 5 Foundation Server, the single JX EJB is deployed twice:

• once as a Bean Managed Transaction (BMT) EJB

• once as a Container Managed Transaction (CMT) EJB. Specifically, as a CMT EJB with the
methods trans-attribute set to “Required”.

Both BMT and CMT are defined by J2EE. You can use both types of transactions when designing
your Foundation Server implementation. Each service within your solution can only use one
transaction type—either BMT or CMT.

Background Information

Both Bean Managed Transactions and Container Managed Transactions are defined by J2EE. They
are not specific to Chordiant. This section provides you with some general information on BMTs
and CMTs. Chordiant-specific information begins with “Transactions in Chordiant Foundation
Server” on page 118.

Bean Managed Transactions

Bean Managed Transactions (BMT) are handled manually within the Java code of the EJB using
the J2EE UserTransaction interface.

Note: Bean Managed UserTransactions can only be active within a single EJB instance
and will not span calls to other EJB instances. This is significant for JX services
because JX services communicate across EJB instances when they interact with
each other (for example, through client agents).

Contrast with “Container Managed Transactions” on page 22.
20 Foundation Server Developer’s Guide, release 5.7

Transactions with the JX EJB
Example of Bean Managed Transaction

Code Sample 2-1 provides an example of code using the J2EE UserTransaction interface.

For More Information

For more detailed information on bean managed transactions, refer to the following online
documentation:

• http://java.sun.com/products/ejb/docs.html#specs

• http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Transaction4.html#63068

If these specific links do not work for you, go to http://java.sun.com/products/jta/
or go to http://java.sun.com and search for JTA (Java Transaction API).

For more information on transactions in Chordiant 5 Foundation Server, refer to “Performing
Transactions” on page 211.

public String MyPublicBMTEJBFunction(String inputData)

{

javax.naming.InitialContext initialContext = null;

javax.transaction.UserTransaction myTransaction = null;

 try

 {

 myTransaction = myEJBSessionContext.getUserTransaction();

 myTransaction.begin();

 // Do XA compliant tasks here (i.e. JDBC, JMS, MQ, …)

 // across one or more XA compliant drivers/servers.

 myTransaction.commit();

 }

 catch (Throwable e)

 {

 myTransaction.rollback();

 }

}

Code 2-1: Using the J2EE UserTransaction Interface
Chapter 2: Understanding JX Architecture 21

http://java.sun.com/products/ejb/docs.html#specs
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Transaction4.html#63068
http://java.sun.com/products/jta/
http://java.sun.com

Transactions with the JX EJB
BMT Deployment

The JX EJB is automatically deployed as both a BMT and a CMT. Code Sample 2-2 shows the
relevant sections of the code for the BMT Deployment Descriptor, for your reference. You can
view the graphical interface for the full deployment descriptor for your application server. In your
development environment, open ejb-jar.xml.

Container Managed Transactions

Container Managed Transactions are used implicitly by the EJB. They are not referenced directly
by the EJB Java code, but rather are controlled by the J2EE “container” (the application server)
upon call/return from the EJB.

Unlike BMT UserTransactions, CMT transactions can be active/dependent across one or more
CMT EJB calls/instances. So you can use CMT transactions across multiple CMT EJBs to process a
business service call sequence in a single J2EE transaction.

For More Information

For more detailed information on container managed transactions, refer to the following online
documentation:

• http://java.sun.com/products/ejb/docs.html#specs

• http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Transaction3.html#62910

If these specific links do not work for you, go to http://java.sun.com/products/jta/
or go to http://java.sun.com and search for JTA (Java Transaction API).

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar id="EJBJar_1055181543930">

<display-name>BMT</display-name>
 <enterprise-beans>
 <session id="Session_1055181544055">

 <ejb-name>EJBGatewayServiceBMT</ejb-name>
 <home>com.chordiant.service.ejb.EJBGatewayServiceHome</home>
 <remote>com.chordiant.service.ejb.EJBGatewayService</remote>
 <ejb-class>com.chordiant.service.ejb.EJBGatewayServiceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>

...
 </session>
 </enterprise-beans>
</ejb-jar>

Code 2-2: BMT Deployment Descriptor
22 Foundation Server Developer’s Guide, release 5.7

http://java.sun.com/products/jta/
http://java.sun.com
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Transaction3.html#62910
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Transaction3.html#62910

Transactions with the JX EJB
Example of Container Managed Transaction

Figure 2-13 illustrates Container Managed Transactions.

Figure 2-13: Container Managed Transaction

Note: With respect to JX client agent/service architecture, a service communicating to
another service through a client agent will always communicate from one
instance of the JX EJB to a different instance of the JX EJB. This mechanism follows
J2EE standards for EJB communication.
Chapter 2: Understanding JX Architecture 23

Transactions with the JX EJB
CMT Deployment

The JX EJB is automatically deployed as both a bean managed transaction (BMT) and a container
managed transaction (CMT). Code Sample 2-3 shows the relevant portions of the code for the
CMT Deployment Descriptor, for your reference. The relevant sections are in bold. You can view
the graphical interface for the full deployment descriptor for your application server. In your
development environment, open ejb-jar.xml.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar id="EJBJar_1055181442577">

<display-name>CMT</display-name>
 <enterprise-beans>
 <session id="Session_1055181443514">

 <ejb-name>EJBGatewayServiceCMT</ejb-name>
 <home>com.chordiant.service.ejb.EJBGatewayServiceHome</home>
 <remote>com.chordiant.service.ejb.EJBGatewayService</remote>
 <ejb-class>com.chordiant.service.ejb.EJBGatewayServiceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

...
 <assembly-descriptor id="AssemblyDescriptor_1">
 <container-transaction id="MethodTransaction_1">

...
<trans-attribute>Required</trans-attribute>

 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Code 2-3: CMT Deployment Descriptor
24 Foundation Server Developer’s Guide, release 5.7

Message Driven Beans
CMT “trans-attr ibute” Options

J2EE defines several options for the “trans-attribute” setting on individual EJB methods. For
Chordiant 5 Foundation Server, the only trans-attribute option is Required, as shown in the
deployment descriptor code starting on page 24.

Although only the Required trans-attribute is supported in this release, here are all of the
J2EE-defined options, for your reference:

• Required — If existing transaction is present then continue it, otherwise create new
transaction. (Supported in this release.)

• RequiresNew — Always create new transaction. Existing transaction, if present, is
suspended.

• Mandatory — Throws exception if existing transaction is not present.

• NotSupported — Existing transaction, if present, is always suspended. No new transaction is
created.

• Supports — Continues existing transaction. Will not create a transaction if existing
transaction is not present.

• Never — Throws exception if existing transaction is present.

Note: CMT EJBs can not access the UserTransaction interface. Only BMTs can access
the UserTransaction interface.

MESSAGE DRIVEN BEANS

Chordiant 5 Foundation Server includes message driven beans (MDBs) for processing JMS
messages asynchronously. These MDBs are part of the J2EE standards. The MDBs are used mainly
for queuing and routing, as well as passing messages asynchronously in the Chordiant Event
Server.

Refer to the following documentation for additional information:

• Chordiant 5 Foundation Server Business Process Server Developer’s Guide for details on queuing
and routing.

• Chapter 10, “Chordiant Event Server” for details on asynchronous messaging.

With the inclusion of MDBs, along with EJBs, the startup order of beans is especially important.
Continue reading the next section, “Startup Order of Beans”, for more information.
Chapter 2: Understanding JX Architecture 25

Startup Order of Beans
STAR TUP ORDER OF BEANS

The startup order of beans is important, with the inclusion of CMT and BMT EJBs and Message
Driven Beans. The CMT bean is responsible for setting up the static helpers and custom objects. If
the CMT bean is not started first, custom objects and services which depend on it will not be able
to function. The queue-based MDBs rely on the queue service to process their messages, as soon as
the MDBs start up. But the queue service cannot function if the CMT has not yet started.

The development environment is set up with this order, and the Application Packaging Manager
(APM) is set up to deploy in this order as well. You do not need to take any action on this order,
but you should be aware of it — especially if you plan to add any custom objects or custom EJBs to
your solution. Table 2-1 lists the proper startup order, along with some comments.

The beans must be loaded in this order because beans in later groups may either depend on or
affect the beans listed before them.

ORDER BEAN NAME DESCRIPTION

1 CMT Must be started first. Custom objects that are started
when this EJB is created will try to reference the CMT EJB.
If it is not there, the custom objects cannot function.
CMT-based services, such as the queue service, also
reference the CMT EJB.

2 BMT Must be started after the CMT EJB is started.

Start the Topic listener MDBs after the CMT and BMT EJBs (described above) and before the Queue listener
MDBs (described after this section), because messages processed by the Queue listener MDBs might alter
state that must be shared by the Topic listener MDBs.

3 QueueAdminTopicMDB Manages JMS Queue state for the Queue Service across a
J2EE cluster.

4 SessionTopicMDB Shares UserSession state for the Session Service across a
J2EE cluster.

5 UserProfileTopicMDB Shares security state for the UserProfile Service across a
J2EE cluster.

Start the Queue listener MDBs after the CMT and BMT EJBs and the Topic listener MDBs (all described
above), because messages processed by the Queue listener MDBs might alter state that needs to be
shared by the Topic listener MDBs and the messages processed by the Queue listener MDBs might need to
call the client agents supported by the CMT and BMT EJBs.

Note that only one MDB listening to a Queue is delivered a given message (point-to-point), even though
there may be many such listeners in a J2EE cluster. All MDBs listening to a Topic get every message that is
broadcast across a J2EE cluster.

6 JXEMessageInboundQueueMDB Processes messages for the Chordiant Event Server.

7 SessionQueueMDB Processes session availability event messages from the
Session service to the Queue Service, which may result in
a QueueItem’s getting pushed to an available session.

Table 2-1: Startup Order of Beans
26 Foundation Server Developer’s Guide, release 5.7

Startup Order of Beans
8 SystemPullQueueMDB Used by the Queue Service to asynchronously process
QueueItems that have been injected by the queue,
requeue, and transfer APIs.

9 SystemPushQueueMDB Used by the Queue Service to asynchronously process
QueueItems that have been injected by the route and
reroute APIs.

ORDER BEAN NAME DESCRIPTION

Table 2-1: Startup Order of Beans (Continued)
Chapter 2: Understanding JX Architecture 27

Startup Order of Beans
28 Foundation Server Developer’s Guide, release 5.7

Chapter 3
Life Cycle of a Foundation Server
Application
Applications and services built using the Chordiant 5 Foundation Server follow an established life
cycle that enables an orderly startup and shutdown of dependent software and services.

This chapter describes the details of using a client agent. You do not need to be aware of these
details if you are using client agents. You might find them interesting if you are building client
agents.

CLIENT APPLICATION STAR TUP AND SHUTDOWN

Thick Client Application

For an application to start and execute successfully, the system completes the following series of
activities:

Note: For details on sections of this example, refer to “StaticHelper” on page 45 and
“GatewayHelper” on page 60.

1. The JX infrastructure and system are set up through the FatClientStaticHelper’s setup method.

Note: This must happen once for each Java Virtual Machine in an application’s main
routine.

2. The client application authenticates using a username and password.

The client application uses the Security service to complete the authentication.

3. The client application optionally initializes its Network Presence through the GatewayHelper.
This enables the client to accept callbacks.

4. The client application requests and receives one or more client agents from the
ClientAgentHelper. The ClientAgentHelper might optionally initialize the client agent at this
time.

5. While running, the client application interacts with the client agents.

6. When done, the client application optionally disables its Network Presence through the
GatewayHelper.
29

Thick Client to Service Interactions
7. The JX infrastructure and system shut down with the FatClientStaticHelper.shutdown method.

Thin Client Applications

Thin client application startup and shutdown is different from that of thick client applications in
these ways:

• All Foundation Server static helpers are automatically set up and shut down in the web/EJB
containers.

• Thin client authentication is handled through the Foundation Server login servlet. See “Using
the Login Helper” on page 311 for more information.

• Thin client network presence is not established in the web/EJB container, but rather in the
browser as a Java applet. See “The RegisterNetworkPresence Class” on page 306 for more
information.

THICK CLIENT TO SER VICE INTERACTIONS

The client application accesses services using an intermediary called the client agent. Figure 3-1
illustrates the interaction between the application and client agent.

Note: For details on sections of this example, refer to “ClientAgentHelper” on page 61
and “Building a Client Agent” on page 134.

Figure 3-1: Thick Client to Service Interactions

In the process of the thick client application’s interacting with the client agent, the system
completes the following series of activities. Steps shown in italics are performed automatically by
the JX infrastructure.
30 Foundation Server Developer’s Guide, release 5.7

Thick Client to Service Interactions
1. The thick client application requests a client agent from the ClientAgentHelper.

2. The thick client application invokes a method on the client agent that corresponds to a
business operation on the service.

3. The client agent assembles the payload.

The payload is the data communicated between the client application and the service. The
data is required by the service operation to complete the business functionality requested by
the client.

4. The client agent invokes the processRequest method in the client agent base class.

5. The JX infrastructure invokes the configured client communication protocol for the service (sockets,
RMI, or IIOP, for example).

6. The JX infrastructure invokes the JX service.

7. The service processes the request.

In the process, it applies the encoded business logic of the organization and performs data
access operations (Chordiant Persistence Server), as required.

8. The service returns the results payload.

9. The JX infrastructure returns the result through the configured server protocol.

10. The JX infrastructure returns the results to the client agent.

11. The client agent returns the results to the client application.

12. The thick client application resumes control and continues execution.
Chapter 3: Life Cycle of a Foundation Server Application 31

Service to Service and Thin Client to Service Interactions
SERVICE TO SERVICE AND THIN CLIENT TO SER VICE
INTERACTIONS

Service to service interactions typically involve a service calling a peer to perform some useful
work. These interactions assume the same general process flow as between a client application
and service, modified to take into account special requirements of server-based software.
Transactions (specifically Container Managed Transactions, or CMTs) can live across one or more
service to service calls, however nested transactions are not allowed. See “Transactions with the JX
EJB” on page 20 and documentation on J2EE Java Transaction API (JTA) for more information.

Thin client to service interactions are the same as service to service interactions because
servlets/JSPs typically reside in the same JVM as the service they are connecting to, just as
services reside in the same JVM as their peers.

Note: For details on sections of this example, refer to “ClientAgentHelper” on page 61
and “Implementing a Service to Service Call” on page 166.

Figure 3-2: Service to Service or Thin Client to Service Interactions

In the process of a service or thin client interacting with a target service, the system completes the
following series of activities. Steps shown in italics are performed automatically by the JX
infrastructure.

1. The originating service or thin client application calls the ClientAgentHelper to get the client
agent for the target service.

2. The originating service or thin client invokes the returned client agent.

3. The client agent assembles the payload.

4. The client agent invokes the processRequest method in the client agent base class.

5. The JX infrastructure invokes the customized target service without performing a transform.

6. The target service processes the service request.

This involves applying the implemented business logic, and performing data access
operations (Chordiant Persistence Server), as required.
32 Foundation Server Developer’s Guide, release 5.7

Service to Client Interactions
7. The target service returns the result.

8. The JX infrastructure returns the result to the client agent of the thin client or service.

9. The target service client agent returns the result.

10. The originating service or thin client regains control and continues execution.

SERVICE TO CLIENT INTERACTIONS

Thick Client Scenario

A service might be required to interact with a client agent associated with the client application. It
might do this, for example, when performing a callback to the client application, requesting it to
perform some work, such as doWorkflowActivity or getMail.

Figure 3-3 illustrates the interaction between a service and the client agent of a client application.
Processes completed automatically by the JX infrastructure are not displayed in the figure and are
shown in italics.

Note: For details on sections of this example, refer to “GatewayHelper” on page 60,
“ClientAgentHelper” on page 61, and “Implementing a Callback” on page 159.

Figure 3-3: Service to Client Interactions in Thick Clients
Chapter 3: Life Cycle of a Foundation Server Application 33

Service to Client Interactions
In the process of a service interacting with a client, the system completes this series of
activities:

1. The client application enables its Network Presence through the GatewayHelper.

The Network Presence offers a mechanism for the client application to be network addressable
and accept callbacks from the service. The protocol used by the network presence is
configurable (RMI or sockets).

The client application receives a Network Presence Key (NWPKey). The NWPKey is an
arbitrary string that is unique in the namespace and can be registered with any services that
need to perform callback functionality.

2. The application gets a client agent from the ClientAgentHelper.

3. The client application registers with a specific client agent (a) and service (b) using the
NWPKey.

The client agent must implement a callback function such as processCallback.

4. The service retains the registered NWPKey list.

A service that needs to perform callbacks must have access to the NWPKeys for the clients it
intends to call back.

5. On the server, some stimulus occurs, affecting the service.

6. The service calls the getClientAgentForKey method, specifying the NWPKey for the required
client agent, and receives a client agent.

7. The service calls the returned client agent to perform a callback.

8. The client agent on the server assembles the payload.

9. The client agent on the server invokes the processRequest method of the client agent base
class.

10. The JX infrastructure invokes the configured protocol for the callback on the server.

11. The JX infrastructure invokes the callback routine, processCallback.

12. The Gateway dispatches the callback to the client agent.

13. The client agent on the client posts an event (or similar) that is of interest to the application.

For example, an application could post a mail arrival event for a specific class of application.

14. The customized client agent returns the result as part of the payload.

15. The JX infrastructure returns the result to the client agent on the server.

16. The customized client agent on the server returns the result to the service.

17. The service regains control and resumes execution.
34 Foundation Server Developer’s Guide, release 5.7

Service to Client Interactions
Thin Client Scenario

Similar to the thick client architecture, the thin client architecture enables a service to interact with
a specific thin client application running in the browser by using the NetworkPresenceApplet.
Data is passed from the service to the NetworkPresenceApplet and then passed on to a JavaScript
function specified by the thin client application—the Custom JavaScript Callback Handler. This
JavaScript function can do any required processing and then return a result value that is returned
to the service.

Figure 3-4illustrates the interaction between a service and a thin client application with network
presence. Processes completed automatically by the JX infrastructure are not displayed in the
figure and are shown in italics below.

This example scenario shows the Custom Callback JavaScript Handler in the browser performing
local processing or making a synchronous request back to the Servlet/JSP layer before it returns to
the JavaScript infrastructure—and therefore back to the callback originator on the server side. In
practice, the Custom Callback JavaScript Handler might process the callback in any manner you
desire, however the JavaScript processing should be non-blocking, as the call from the service is
synchronous.

Figure 3-4: Service to Client Agent Interactions in Thin Clients

1. A browser sends an HTTP request to the Request Server.

2. The Request Server returns an HTTP response to the browser with HTML markup for the
Network PresenceApplet frame.

3. The browser is initialized and loaded with Chordiant thin-client Network Presence
components shown in the figure. The Network Presence Key (NWPKey) is created and
registered in JNDI through the RegisterNetworkPresence servlet.

4. The Custom JavaScript Callback Handler is registered with the JavaScript infrastructure,
typically when the HTML page is loaded (through the onLoad mechanism).
Chapter 3: Life Cycle of a Foundation Server Application 35

Service to Client Interactions
5. On the server, some stimulus—such as an incoming email—occurs, affecting the service.

6. The service calls the getClientAgentForKey method, specifying the NWPKey for the required
client agent, and receives a client agent.

7. The service calls the returned client agent to perform a callback.

8. The client agent on the server assembles the payload.

9. The client agent on the server invokes the processRequest method of the client agent base
class.

10. The JX infrastructure invokes the configured protocol for the callback on the server.

11. The Network Presence in the browser receives the callback request.

12. The Network Presence in the browser passes the callback request to the JavaScript infrastructure.

13. The JavaScript Infrastructure dispatches the information to the Custom JavaScript Callback
Handler.

14. Once the Custom JavaScript Callback Handler has the information, it can process it in any
appropriate manner. This scenario includes two examples:

a. The browser can handle the callback information on the browser itself, using
JavaScript and DHTML. Skip ahead to Step 18 on page 36.

b. The browser can send an HTTP request back to the application server for server-side
processing. The frame for the response must be specified within this HTTP request.

15. The server processes the HTTP request.

16. The server sends an HTTP response back to the specified frame on the browser.

17. The application receives the HTTP response.

18. Control is returned to the Custom JavaScript Callback Handler.

19. Control is returned to the JX JavaScript infrastructure.

20. The JX Network Presence writes the response.

21. The JX infrastructure returns the result to the ClientAgent of the caller.

22. The ClientAgent returns a result and the caller regains control.
36 Foundation Server Developer’s Guide, release 5.7

Chapter 4
Managing State in JX Services
Chordiant 5 Foundation Server supports these models for services:

• “Stateless Service”, including:

— Multi-Instance

— Multi-Instance, Central Persistent

• “Stateful Services”, including:

— Single Instance, Multi-Threaded

— Single-Instance, Multi-Threaded, Persistent

— Multi-Instance, State Propagated

STATELESS SER VICE

Stateless service means that a software program cannot take information about the last session
into the next, such as settings the user made or conditions that arose during processing.

Stateless service in Foundation Server supports both horizontal and vertical scalability. This
means that a program can be replicated multiple times on one system, or on many systems.
Foundation Server utilizes the automated load balancing and failover capability of J2EE.

Dynamic state is not allowed in stateless service, but static state can be cached in memory. In static
state, data can be viewed but not changed. An example of static state might be a lookup table of
zip codes. An example of a dynamic state might be a customer’s account data.

Stateless service also supports fault tolerance; if one replicate fails, other replicates immediately
pick up the load, ensuring uninterrupted service and no loss of data. This is the preferred service
design and deployment model.

Chordiant supports these two stateless models:

• “Multi-Instance Model”

• “Multi-Instance, Central Persistent Model”
37

Stateless Service
Multi- Instance Model

Figure 4-1 illustrates a stateless model that has several replicates of a service, each of which might
have static state.

Figure 4-1: Stateless, Multi-Instance

This stateless service model is both horizontally and vertically scalable, so load balancing can be
achieved. In the event a replicate fails, any of the replicates can pick up the load, insuring
uninterrupted service. Since all source data is static, there is no loss of data when a replicate goes
down.

JX Model

In the JX architecture, the multi-instance model can be accommodated using a stateless JX service.
38 Foundation Server Developer’s Guide, release 5.7

Stateless Service
Multi- Instance, Central Persistent Model

The model shown in Figure 4-2 shows multiple instances of the service, as in the first model.
However, dynamic state is written to a database. Synchronization for this data can be handled by
the database’s record-locking, or other appropriate, mechanism, such as the Chordiant
LockService.

Figure 4-2: Stateless, Multi-Instance, Central Persistent

The multi-instance, central persistent stateless model offers the same advantages as the
multi-instance stateless model with the added advantage of being able to utilize dynamic state.
However, the need to constantly access the database can affect performance.

JX Model

In the JX architecture, the multi-instance, central persistence model can be accommodated using a
stateless JX service in combination with Chordiant Persistence Server (JXP) for database access.
Chapter 4: Managing State in JX Services 39

Stateful Services
STATEFUL SER VICES

Stateful services enable utilization of dynamic state.

Note: Although there is currently no built-in JX support for stateful services, the
following stateful models are provided as a guide for developers who want to
create their own.

• “Single Instance, Multi-Threaded Model”

• “Single-Instance, Multi-Threaded, Persistent Model”

• “Multi-Instance, State Propagated Model”
40 Foundation Server Developer’s Guide, release 5.7

Stateful Services
Single Instance, Mult i -Threaded Model

Figure 4-3 illustrates a single instance of a service in the entire J2EE application server namespace.
The service can be accessed by multiple users at the same time. Dynamic state must be managed
using an appropriate synchronization mechanism.

Figure 4-3: Stateful Model, Single Instance, Multi-threaded

A multi-threaded stateful service can work very well if the percentage of utilization is balanced
accordingly, in relation to the rest of the services. Since there can be only one instance of the
service, over-utilization can result in reaching a saturation limit that affects efficiency. This type of
service can only be as fast as the machine on which it is running, and can only scale to the CPU
capacity of that machine.

The disadvantage of this stateful model is that if the process fails, users cannot access the service
until it is restarted, and all dynamic state that was held in memory will be lost. Developers can
modify this model so that data is written to a database. Then, in the event of a failure, the cached
Chapter 4: Managing State in JX Services 41

Stateful Services
data last saved can be restored. High Availability software can also be implemented to act as a
watchdog to restart the service. Then the service can restore its dynamic state, minimizing the
amount of user down time.

JX Model

In the JX architecture, the single instance, multi-threaded model can be accommodated using a
combination of one or more JX stateless services and a JX singleton CustomObject configured on a
specific application server replicate.

In this case, the stateless front-end, or facade, JX services pass requests through to the singleton JX
CustomObject. Here, the JX CustomObject could be an RMI object which is configured to run
centrally on one of the Application Server replicates. The stateless JX facade services can look up
this RMI object in JNDI.

Figure 4-4: JX Version of Stateful Model, Single Instance, Multi-threaded
42 Foundation Server Developer’s Guide, release 5.7

Stateful Services
Single-Instance, Mult i -Threaded, Persistent Model

The stateful model shown in Figure 4-5 is similar to the previous model. However, this model also
provides fault tolerance because dynamic state is periodically written to a database. Therefore, if
the process fails, the dynamic state can be restored from the database once the process is restarted.
In terms of performance, the single-instance, multi-threaded, persistent service model sacrifices
some speed to access the database.

Figure 4-5: Single Instance, Multi-Threaded, Persistent

JX Model

In the JX architecture, the singleton instance multi-threaded persistent model can be
accommodated using a combination of the single instance, multi-threaded model (described on
page 41) and Chordiant Persistence Server (JXP) for database access.
Chapter 4: Managing State in JX Services 43

Stateful Services
Multi- Instance, State Propagated Model

The stateful, multi-instance service model, shown in Figure 4-6, enables multiple instances of a
service with dynamic state held in memory. Statefulness is managed by dynamically propagating
each instance’s dynamic state to all of the other instances. The multi-instance, state-propagated
service supports scalability, load balancing and fault tolerance.

Figure 4-6: Stateful, Multi-Instance, State-Propagated

If one of the processes fails, the other instances will continue the service uninterrupted, as in the
stateless, multi-instance model. And, because dynamic state is propagated to the other instances,
no loss of data occurs. The service can be replicated as many times as needed, both horizontally
and vertically.

The multi-instance, state propagated service model works well provided the amount of data that
has to be propagated is not excessive. There is also some latency propagating the data to all
instances, and large amounts of data being written to many instances will affect performance and
efficiency.

JX Model

In the JX architecture, the multi-instance, state propagated model can be accommodated using
stateless JX services in combination with some distributed event mechanism, such as Java Message
Service (JMS). JX CustomObjects or J2EE message beans can be used to receive the JMS events.

Data is dynamically
propagated to all
instances of the
service
44 Foundation Server Developer’s Guide, release 5.7

Chapter 5
Chordiant 5 Foundation Server Helpers
The Chordiant 5 Foundation Server includes several utilities, or helpers, to assist you in creating
your Chordiant 5 solution. These helpers assist with functions including logging, configuration,
setup and shutdown.

STATICHELPER

The StaticHelpers call the other helpers in the proper order to properly set up and maintain your
environment.

There are two StaticHelpers to set up the appropriate JX infrastructure for the container:

• application server — for J2EE application servers, such as WebSphere or WebLogic.

• thick client — for Swing-based thick client JVM containers

Note: Within a J2EE Application Server, such as WebSphere or WebLogic, the
StaticHelper is automatically set up and shut down by the Chordiant
infrastructure. There is nothing to do for the Servlet/JSP, JX CustomObject, or JX
Service Developer.

The StaticHelper has one method with different commands. They are described for the FatClient,
but similar commands are available for the application server.

• The SETUP command is used at the beginning of a program. It calls the other helpers
described in this chapter in the proper order to prepare your environment for use.

• The SHUTDOWN command is used at the end of a program, just before exit. It shuts down
the various helpers in the appropriate order to properly shut down your environment.

• The REFRESH command is used to refresh the cache of the various helpers.

• The STATUS command is used to check the status of the helpers.

public static final String FatClientStaticHelper.serviceControl(
StaticHelperBaseClass. SERVICE_CONTROL_COMMAND_SETUP);

public static final String FatClientStaticHelper.serviceControl(
StaticHelperBaseClass.SERVICE_CONTROL_COMMAND_ SHUTDOWN);

public static final String FatClientStaticHelper.serviceControl(
StaticHelperBaseClass. SERVICE_CONTROL_COMMAND_REFRESH);

public static final String FatClientStaticHelper.serviceControl(
StaticHelperBaseClass. SERVICE_CONTROL_COMMAND_STATUS);
45

ConfigurationHelper
The StaticHelper base class is in the package com.chordiant.core.StaticHelperBaseClass. It
includes:

• com.chordiant.core.FatClientStaticHelper

• com.chordiant.core.ThinClientStaticHelper

• com.chordiant.core.ApplicationServerStaticHelper

CONFIGURATIONHELPER

The ConfigurationHelper, used at runtime, accesses the master.xml file and any
{component}.xml, {nodename}.xml, and sitemaster.xml files and returns information
about the configuration the XML configuration file specifies. Refer to “Configuration Files” on
page 95 for more information on master.xml and other configuration files.

The ConfigurationHelper provides fundamental configuration information and is thus called by
other utilities within the Chordiant 5 Foundation Server.

Code Sample 5-1 provides an example of a generic configuration file to show the basic format of
these files.

The ConfigurationHelper is in the package com.chordiant.core.configuration.ConfigurationHelper.

Configuration Files and the ConfigurationRootDirectory

Configuration files are located in the {CHORDIANT_ROOT}/config/Chordiant/ directory of
either the development or production environment. {CHORDIANT_ROOT} corresponds to the
chordiant.configuration. configurationRootDirectory parameter in your application server. You
must either have your configuration files in this directory, or point the ConfigurationRootDirectory
parameter to the location of your configuration files. In a production environment, these
directories are located within the EAR file directory.

<section> name
<tag> name

<value> abc </value>
</tag>
<tag> name

<value> def </value>
</tag>

</section>

<section> name
<tag> name

<value> abc </value>
</tag>
<tag> name

<value> def </value>
</tag>

</section>

Code 5-1: Generic {component}.xml Configuration File
46 Foundation Server Developer’s Guide, release 5.7

LogHelper
ConfigurationHelper Methods

ConfigurationHelper includes the following methods:

• getConfigurationValue—Use this method, providing the desired section name and tag name,
to receive a string with the associated value.

• getConfiguration—Use this method, providing the desired section name, to receive an array
of the configuration items (tag names and values).

Code Sample 5-2 illustrates how to retrieve configuration values from an XML configuration file
via the ConfigurationHelper.

Configuration Refreshing

Whenever you change configuration information, go to the Administrative Console to refresh the
ConfigurationHelper. For information on the Administrative Console, refer to Chapter 6,
“Chordiant 5 Foundation Server Administration”, beginning on page 63.

LOGHELPER

The LogHelper is used at runtime to output a variety of messages concerning the application or
the server. Logging is configured in the configuration XML files.

The LogHelper can be controlled by the service control, so it can be setup, shut down, refreshed,
or return a status.

The LogHelper is in the package com.chordiant.core.log.LogHelper.

public static String getConfigurationValue(String sectionName, String tagName)

public static ConfigurationItem[] getConfiguration(String sectionName)

String section = "TestService";

String tag = "classname";

String value = null;

value = ConfigurationHelper.getConfigurationValue(section, tag);

Code 5-2: Using ConfigurationHelper to Retrieve Configuration Values
Chapter 5: Chordiant 5 Foundation Server Helpers 47

LogHelper
Logging Interfaces

The following interfaces are included in the LogHelper. Each is based on the package name, class
name, and method name where the message is generated and displays a message string.

Error

Error messages are the most serious of all messages. They should always be turned on. They
signify that the system is not working as it should and that these problems must be addressed. For
example, any communication problems between the client and server are displayed as error
messages.

Try to be as precise with your error message text as possible — down to where in the method an
exception might have occurred. This will help you track down the error.

There are two kinds of error messages. The first is generated by an error with another program.
The second is generated by an error within your own program.

1. Error with another program:

Sends an error message (String msg) to the configured log writer, based on the error that
prompted the message (Throwable th).

This Throwable is usually created by an error within a different application which interacts
with your application. For example, if you are trying to enter a value in a database, but the
database sees that value as invalid, the program accessing the database will throw an
exception. That exception will be delivered to the user of the application who generated the
error. It will also be sent to the log. In the message text you write, try to explain the nature of
the error to the user, although it may not necessarily be a problem with your own program.

You might also choose to call this error message from within your Chordiant-based
application if you think the Throwable error information will be helpful for the user.

2. Error with your own program:

Sends an error message (String msg) to the configured log writer. The standard log writer is
standardout. Refer to page 54 for more information.

This error is logged for your own Chordiant-based program.

public static void error (String packagename, String classname, String methodname,
String msg, Throwable th)

public static void error (String packagename, String classname, String methodname,
String msg)
48 Foundation Server Developer’s Guide, release 5.7

LogHelper
Warning

Warning messages are not as severe as errors. Warnings indicate that some known and repairable
condition has occurred, but the system is still stable. They are usually not turned on for
production.

Info

Informational messages are basic configuration and system settings messages. These are typically
hit only once during startup. They are usually only turned on during development and not during
production.

Debug

Debug messages are basic messages letting you know where and what the program is executing.
These can include parameter values in methods, operational state, and could have very large
messages or complex message construction.

Debug messages are usually turned on only during initial testing and possibly during error
recreation or error tracking. They are not used during production.

Because debug messages can be very large, they are controlled by isDebugLogOn. For more
information, refer to “isDebugLogOn” on page 52.

MethodEntry / MethodExit

Entry and exit messages show entry and exit points for methods. They are similar to info
messages, but can be treated differently in the log. They are usually only used during
development, error tracking, error recreation, or testing. They are not used during production.
Notice there is no text message. This message only shows the entry and exit for a method, without
further annotation.

public static void warning (String packagename, String classname, String methodname,
String msg)

public static void info (String packagename, String classname, String methodname,
String msg)

public static void debug (String packagename, String classname, String methodname,
String msg)

public static void methodEntry (String packagename, String classname, String methodname)

public static void methodExit (String packagename, String classname, String methodname)
Chapter 5: Chordiant 5 Foundation Server Helpers 49

LogHelper
Performance

Performance logging is helpful when you are tuning your application. Performance logging is
usually used only during development and testing. It is not used during production. Place
performance statistics calls within your code to receive logged messages about the start and end
times of your method call, its duration, and whether there were any errors.

Foundation Server has already instrumented performance logging on the base client agent and
EJBs through distributed auditing. By turning on distributed auditing and setting proper filters,
you can obtain the performance information for any function calls on any service. For details on
distributed auditing, refer to “distributedaudit” on page 105. At times, however, it might be
necessary to get information for a particular segment of code within a function call. To accomplish
that, logPerformanceStatistics calls can be placed wherever desired in your code. With filters
properly set, performance statistics for the code segments instrumented are printed out to
standardout, or files where you have redirected standardout.

Code Sample 5-3 shows the logPerformanceStatistics method, the primary call you will use for
core Foundation Server components, particularly EJBSmartStub and EJBGatewayServiceBean.
Additional overloaded methods for using test harnesses are available in the LogHelper class and
are described in the associated Javadoc.

where:

public static void logPerformanceStatistics(
String packagename,
String classname,
String methodname,
String bopName,
long startTime,
long endTime,
String userName,
String serviceName,
String functionName,
String inputData,
String outputData,
boolean errorFlag)

Code 5-3: Performance Logging Call within a Method

packagename = full source package name

classname = full source class name

methodname = full source method name

bopName = name of the Business OPeration, pick a unique one

startTime = starttime of the BOP, in milliseconds

endTime = endtime of the BOP, in milliseconds

userName = username like hmonroe, can be null

serviceName = name of the service

functionName = name of the function called on the service
50 Foundation Server Developer’s Guide, release 5.7

LogHelper
When you run your code with the performance logging calls, you will receive logging output
similar to Code Sample 5-4. The meaningful data starts with <PTH_STATISTICS. You can choose
to trim the output to start with <PTH_STATISTICS. That portion of Code Sample 5-4 is shown in
bold.

The comma-separated fields in the Performance Logging output, as shown in Code Sample 5-4,
are:

You can analyze the performance data to evaluate your implementation. Performance logging is
intended for studying single threads. Contact your Chordiant consultant for information on
performance evaluation.

For additional performance logging through distributedaudit, refer to “distributedaudit” on page
105.

inputData = serilialized inputdata

outputData = serilialized output data

errorFlag = true if error in operation, false if not.

<Wed Sep 03 16:35:17 PDT 2003> <1062632117468> < PERF > <Thd=P=35240:O=0:CT>
<com.chordiant.core.test.fat tester.logstatistics()>
<PTH_STATISTICS,engsrv14.chordiant.com,hmonroe,0,6666,engsrv14.chordiant.com-nomanager-1234-6666,Login,09/03/2003,
16:35:17,09/03/2003,16:35:17,463,0,N>

Code 5-4: Output from Performance Logging

<PTH_STATISTICS tag
hostname
username
iteration
client number on this machine
client id
BOP name
Start date
Start time
End time
Start time in milliseconds
Duration of the call
Error flag (N means no error)
Chapter 5: Chordiant 5 Foundation Server Helpers 51

LogHelper
isDebugLogOn

This interface reads the configuration files to find the value of LOG_DEBUG_ON. If it is true, this
value is true and you will see debug messages. True is the default value in the master
configuration XML file. Since debug messages can be large, this variable enables you to turn them
off.

Note: This setting supersedes any settings that you might make for your log filters
within the configuration XML file. So although you might have set logging for the
debug level, if isDebugLogOn is false, you will not see any debug messages,
even though you are filtering for them.

Suggested use of isDebugLogOn

In this example, isDebugLogOn will inform the method if it should construct a lengthy message
for debug logging. If debug logging is turned off in the configuration file, unnecessary message
generation can be avoided.

Caution When Using isDebugLogOn

Do not include other log messages within the brackets of the if (LogHelper.isDebugLogOn())
section of code. If isDebugLogOn is false, none of the code within the brackets will be run and you
will not see any log messages contained within the brackets.

In the code sample below, if DebugLogOn is set to false, you will not see the methodEntry message
in the log, even if the methodEntry/methodExit is turned on. To see the methodEntry message in
the log, both methodEntry/methodExit and DebugLogOn would need to be turned on.

public static boolean isDebugLogOn()

if (LogHelper.isDebugLogOn())

{

 for(int n=0; n < 1000; n++)

 {

 message = message + ", " + n;

 }

 LogHelper.debug(PACKAGE_NAME, CLASS_NAME, METHOD_NAME, message);

}

if(LogHelper.isDebugLogOn())

{

 LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

}

52 Foundation Server Developer’s Guide, release 5.7

LogHelper
Logging Configuration

Configuration of logging during runtime is handled in the configuration XML files (mainly
{component}.xml, but also {nodename}.xml, or sitemaster.xml files) under the Log
section.

There are three sections within the loghelper.xml file:

1. Enumeration — The listing of the active filters which will be described later in the file.

2. Configuration — Consists of a single variable, LOG_DEBUG_ON, which controls whether
you will see debug messages.

3. Filters — Describes the details of the filters enumerated in the first section.

Code Sample 5-5 is an annotated representation of the loghelper.xml configuration file. You
can also refer to the loghelper.xml file itself, located in the
{CHORDIANT_ROOT}/config/Chordiant/components/master directory.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration.configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

CODE COMMENTS

<Section> Log The start of the enumeration section. You
can list as many filters as you want.

<Tag>log.Filter
<Value>FilterOne</Value>

</Tag>

<Tag>log.Filter
<Value>FilterTwo</Value>

</Tag>

</Section>

The <Tag> must be “log.Filter” for each
<Value>. If you create a
{nodename}.xml or
{component}.xml file exists, you can
override the log.Filter by using log.Filter
within your configuration. Otherwise, you
can add filters by using filters with
different names.
The <Value> must be unique for each
filter because it refers to a section later in
the configuration file.

<Section>LogConfiguration
<Tag>LOG_DEBUG_ON

<Value>true</Value>
</Tag>

</Section>

This section only contains the
LOG_DEBUG_ON variable. This value
defines what isDebugLogOn will return. By
default, it is set to “true” so you will see
debug messages if you are filtering for
debug messages in a filter section. If the
value is set to “false”, you will not see any
debug messages, even if your filter
includes them.

Code 5-5: Representation of loghelper.xml File
Chapter 5: Chordiant 5 Foundation Server Helpers 53

LogHelper
<Section>FilterOne
<Tag>filterclass

<Value>com.chordiant.core.
log.LogFilter</Value>

</Tag>

This describes the FilterOne filter which
was introduced earlier in the enumeration
section.
The filterclass value is the fully-qualified
class path of the standard LogFilter class
provided by Chordiant.

<Tag>criteria
<Value>com</Value>

</Tag>

The criteria defines the
package.class.method name sequence for
which you want to log messages.

By default, the value is “com” to catch
everything where the package name
begins with “com”. However, you can
define more than one criteria value with
different levels of precision, all the way
down to the method name.

Refer to “Multiple Criteria and Levels” on
page 57 for more information.

<Tag>level
<Value>error</Value>

</Tag>

<Tag>level
<Value>warning</Value>

</Tag>

The level describes which type of
messages to log: error, warning, info,
debug, entry, and exit. You can have one
or more levels defined per criteria.
Here, both the error and warning levels
are defined.

<Tag>writer

<Value>com.chordiant.core.
log.LogWriterStandardOut
</Value>

</Tag>

</Section>

The writer defines how the messages are
processed. By default, the output is to
StandardOut where messages are printed
on your screen, or wherever they are
written by your application server.

<Section>FilterTwo

<!--same structure as FilterOne-->

</Section>

FilterTwo has the same structure as
FilterOne, with different values for the
elements.

CODE COMMENTS

Code 5-5: Representation of loghelper.xml File (Continued)
54 Foundation Server Developer’s Guide, release 5.7

LogHelper
Figure 5-1 shows the details of the LogHelper relationships:

• The LogHelper can have many filters.

• Each filter can have many criteria.

• Each criterion can have many levels. The available levels are:

— error

— warning

— info

— debug

— method entry/exit

— perf (for performance statistics)

• Each filter can have many writers.

Figure 5-1: Relationships within LogHelper.xml
Chapter 5: Chordiant 5 Foundation Server Helpers 55

LogHelper
Creating a New LogFilter

To create a new log filer:

1. Develop your Java Class to implement your own filter logic and implement
Chordiant-required Log Filter interfaces.

2. Copy loghelper.xml from the
{CHORDIANT_ROOT}/config/Chordiant/components/master directory to
{CHORDIANT_ROOT}/config/Chordiant/components/ directory.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration.configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

3. Rename the loghelper.xml file in the /components directory and update it.

Replace the default filter class name within the FilterOne section with your own filter class.

Configuring Message Formatting

You can customize the process method on the log filter to control how your message is formatted.
Write you own code in the process method if you want custom behavior.

Criteria Details

Criteria Formatting

When working with filters, be aware of these formatting requirements:

• Criteria values are case-sensitive.

• When defining Criteria down to the method level, do not put the parentheses () on the method
name.

For example, use com.chordiant.bd.custom.myMethod, without any parentheses on the end.

Note: When specifying criteria down to the method level, be aware that the filter works
on the “startsWith” algorithm. So in addition to the filter criteria, a path starting
with that criteria will also be selected.

For example, if you specify the criteria com.chordiant.temp, you expect that
com.chordiant.temp.method will be selected which is the case. However, you
must consider that com.chordiant.temporary will also be selected.

<Section>FilterOne
<Tag>filterclass

<value>com.chordiant.core.log.LogFilter </value>
</Tag>
…

</Section>
56 Foundation Server Developer’s Guide, release 5.7

LogHelper
Multiple Criteria and Levels

In your XML configuration files, you can specify a single filter with multiple criteria and levels.
Here is an example of a filter you might specify.

Redundant Levels

Redundant levels do not have any affect on the LogHelper. Once you have listed a level within a
filter, you will not receive duplicate messages by repeating the level within that filter.

Redundant Fi lters

Be aware of redundant filters. If you create several filters with redundant criteria and levels, for
example two filters which look for errors in com components, you will receive multiple messages.

Creating a New LogWriter

To create a new log writer:

1. Develop your Java class to implement your own writer logic and implement Chordiant
required com.chordiant.core.log.LogWriterHandler interface.

2. If you have not already done so, copy loghelper.xml from the
{CHORDIANT_ROOT}/config/Chordiant/components/master directory to
{CHORDIANT_ROOT}/config/Chordiant/components/ directory.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration.configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

<Section>FilterOne

<Tag>filterclass

<Value>com.chordiant.core.log.LogFilter</Value>

<criteria>com</criteria>

<level> error</level>

<level> warning</level>

<criteria> com.chordiant</criteria>

<level> info</level>

<criteria> com.chordiant.core</criteria>

<level> debug</level>
Chapter 5: Chordiant 5 Foundation Server Helpers 57

LogHelper
3. Update the loghelper.xml in the /components directory.

Replace the default writer class name value with your own writer class.

Changing Logging Configuration

If you want to change the filter levels you have defined, change the settings in an XML
configuration file. Then use the Chordiant Administrative Console to refresh the
ConfigurationHelper, then refresh the LogHelper.

Note: You must refresh the ConfigurationHelper first.

Refer to “Using the Administrative Console” on page 66 for details.

For details on configuring logging, refer to “Configuration Files” on page 95.

Production Environment Sett ings

In most cases, within the production environment, you will only have error logging on. Other
messages can be helpful during development, error tracking recreation, and testing, but they add
extra overhead in a production environment.

For a production environment, change your production filter as described here:

• Include only the level Error. Remove all other levels.

• Change the setting of LOG_DEBUG_ON to FALSE. It is set to TRUE by default. This level of
logging is not needed for the production environment.

• Set the criteria to com to catch all errors related to the Chordiant 5 Foundation Server.

<Section>FilterOne
…
<Tag>writer

<value>com.chordiant.core.log.LogWriterStandardOut</value>
</Tag>
…

</Section>
58 Foundation Server Developer’s Guide, release 5.7

LogHelper
Call ing the LogHelper

Code Sample 5-6 illustrates how to use LogHelper within your code.

Log File Output

The standard log writer writes the log messages to your screen, or to wherever your application
server writes to standardout. Log messages appear in this order:

1. Time Stamp—MMM DD, YYYY HH:MM:SS - date

2. Milliseconds—MSS - long

3. Severity—string (Debug, Informational, Warning, Error, Entry, Exit)

4. ThreadID—string (the process running on the machine at the time)

5. Sub-System Marker—string (The package, class, and method name taken from the interface)

6. Message Text—string (The value of the message you wrote.)

7. Exception Name (optional)—string (The value of the Throwable)

Note: Be aware of management issues with logging. Log files can become quite long if
you redirect the output of the LogHelper to a file. If you choose, you can create a
batch file to pipe the messages to a file and manage their size.

import com.chordiant.core.log.*;

public static final String PACKAGE_NAME = ”com.chordiant.packageTest”;
public static final String CLASS_NAME = ”classTest”;
public static final String METHOD_NAME = ”methodTest”;
//construct Debug message
for (int i=0; i< 100; i++)
{
if (LogHelper.isDebugLogOn())
{

message = “Debugging this routine at loop “ + i;
LogHelper.debug(PACKAGE_NAME, CLASS_NAME,METHOD_NAME, message);

}
.
.
.
}

Code 5-6: Using LogHelper
Chapter 5: Chordiant 5 Foundation Server Helpers 59

GatewayHelper
Log File Output Example

Here is an example of error message output. Note that if you expand the width of the viewing
window, this will all be on one long line on your monitor, so all the columns (including time and
message type) line up.

Multi-Threaded Logging

Log files can become large, and different logging threads become intermingled.

To find all logs for a specific thread, search (GREP) for the ThreadID. If you find an error message,
search backward from it to find the events leading up to the error.

GATEWAYHELPER

The GatewayHelper enables the network presence for a client “application” instance. When the
GatewayHelper is set up, it creates a callback server to process callbacks and also generates a
unique network presence key (NWPKey) which is registered environmentally with the name
service of the Application Server. This identifier enables services to connect with the application
or client agent through a callback.

• For the thick client, the GatewayHelper resides in the client application’s JVM.

• For the thin client, the GatewayHelper resides on the HTTP client. That is, in the browser.

The GatewayHelper is in the package com.chordiant.service.GatewayHelper.

For the thick client, the main GatewayHelper methods are:

• enableNetworkPresence—Generates a network presence ID and creates and sets up a
gateway with that presence

Here is an example usage of the enableNetworkPresence method:

Notice that the user name and authentication token are required for enabling network
presence. This is done for security purposes, ensuring that the user has permission to have
network presence. In addition, the user name is used to generate the NetworkPresenceKey.

You can only assume that the NetworkPresenceKey is unique within the system. Its actual
content is subject to change.

<Fri Sep 21 14:30:25 PDT 2001> <1001107825160> < ERROR > <Thd=clientHandlerThread
[127.0.0.1]/[1598]> <com.chordiant.persistence.test.JXPTestService.processRequest()>
<Exception occurred <java.sql.SQLException: DataSourceRunner.getConnection() ERROR:
Connection pool is empty or all connections are in use> >

public static String enableNetworkPresence(String username,
String authentication) throws CommandException

String networkPresenceKey = GatewayHelper.enableNetworkPresence(
userName,authenticationToken);
60 Foundation Server Developer’s Guide, release 5.7

ClientAgentHelper
• disableNetworkPresence—Removes the network presence when it is no longer needed.

Here is an example usage of the disableNetworkPresence method:

CLIENTAG ENTHELPER

The ClientAgentHelper vends client agents. Clients use client agents to access JX Services. All
Chordiant services should have corresponding client agents.

The ClientAgentHelper loads the configuration at startup, so it knows which client agents are
available for use. Client agents are also loaded on demand, as required. The client agents are
cached locally.

The ClientAgentHelper is in the package com.chordiant.service.clientagent.ClientAgentHelper.

Methods

• getClientAgent—Returns the specified client agent, given the client agent class’s name. This
class name is also how the client agent is registered in the XML configuration file.

• getClientAgentForKey—Returns a client agent for callback purposes, given the client agent
class’s name and its network presence key. The class name is also how the client agent is
registered in the XML configuration file.

Note: The ClientAgentHelper returns an Object, not an actual client agent. You must
cast the result of the ClientAgentHelper.getClientAgent method to the client
agent you desire, as shown here:

SECURITY SERVICE

The Security Manager Service (formerly the SecurityHelper) provides an authentication token and
checks the authorization of the user when a user name and password are entered.

The Security Manager Service is documented in “Security” on page 253.

public static void disableNetworkPresence() throws java.lang.Exception

GatewayHelper.disableNetworkPresence();

ClientAgent getClientAgent(String ClientAgentName)

ClientAgent getClientAgentForKey(String ClientAgentName, String keyString)

myClientAgent = (AccountClientAgent)
ClientAgentHelper.getClientAgent(AccountClientAgent)
Chapter 5: Chordiant 5 Foundation Server Helpers 61

CustomObjectHelper
CUSTOMOBJECTHELPER

This component enables you to put any CustomObject Java class into the J2EE application server
container and have it work with your system.

The CustomObjectHelper is documented in “CustomObjects and the CustomObjectHelper” on
page 176.
62 Foundation Server Developer’s Guide, release 5.7

Chapter 6
Chordiant 5 Foundation Server
Administration
The Chordiant Administrative Console enables you to monitor and control Chordiant services.

Information on exceptions and error handling is available at the end of this chapter, starting on
page 92.

MONITORING THE CHORDIANT 5 FOUNDATION SERVER
SYSTEM

Monitoring the system—including startup, shutdown, refresh, and status methods—is done
through the Chordiant 5 Foundation Server Administrative Console.

The Administrative Console enables you to:

• Visualize the layout of your distributed system

• Issue service control commands from the namespace all the way down to the subcomponent
level

Figure 6-1 on page 65 shows the basic layout of a generic distributed system, including the
namespace, groups, JVMs, components, and subcomponents.
63

Monitoring the Chordiant 5 Foundation Server System
The following components are present in Figure 6-1:

• Namespace — Includes all servers and JVMs in a system.

• Group — A set of JVMs that you configured.

• JVM — A J2EE application server replicate which contains J2EE and Foundation Server
components.

• Components and subcomponents:

— CustomObjectHelper: A manager for CustomObjects.

CustomObjects are the subcomponents.

For more information, refer to “CustomObjects and the CustomObjectHelper” on
page 176.

Do not use the commands in the Administrative Console on the CustomObjectHelper.
See the note on page 73.

— StaticHelper: A manager for static objects within the JX architecture.

Static Objects are the subcomponents.

For more information, refer to “StaticHelper” on page 45.

— EJBs: A J2EE entity which manages JX services.

Services are the subcomponents.
64 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
Figure 6-1: Distributed System Layout
Chapter 6: Chordiant 5 Foundation Server Administration 65

Monitoring the Chordiant 5 Foundation Server System
Using the Administrative Console

To send a command:

1. Open the Administrative Console from the Chordiant Tools Platform. From the Admin menu,
select JX Admin.

Note: The Administrative Console is a Java Swing application that can be run in UNIX
by creating a shell executable file.

Figure 6-2: Administrative Console

2. Select the target you want to control. The target can be at any level described in Figure 6-1.

Note: When you send a command, it affects that level, and any level below it. So if you
send a command to a component, it affects both the component and any
subcomponents it contains. If you send a command to a namespace, everything
within it is affected.
66 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
3. Click the appropriate command button.

— Setup: Sends the setup command

— Shutdown: Sends the shutdown command

— Status: Retrieves status for the selected objects

— Refresh: Refreshes the selected objects

4. View the status information in the Status panel.

You can copy and paste status information into other applications. Click Clear to clear the
status panel.

5. To reset the information in the Administrative Console, select Reset from the File menu.

Service Control API

You can also control these service control functions programmatically through the API of the
AdministrationHelper Java class. Refer to the Javadoc for the AdministrationHelper.java
class.

Service Control through the Command Line

Chordiant also provides a command line interface to the service control functions. The
ServiceControlCommander.java, located in the
com.chordiant.queue.test.ServiceControlCommander package, can be used across JVMs to control
services, custom objects, and static helpers.

Code Sample 6-1 shows how the commands are structured.

Where:

• administrationURL is the socket and port number where the Administrative Console is
running.

• serviceControlCommand is a choice of setup, refresh, shutdown, and status. These commands
are discussed on “Standard Behavior” on page 69.

• namedComponentType is whether the target object is an EJB registry helper, a custom object
helper, or a static helper.

— EJB registry helper: a service within the JX EJB.

— custom object helper: specified for custom objects, like the asynchronous messaging
helpers.

— static helper: the helpers provided with Chordiant, including the ConfigurationHelper
and LogHelper, as described in “Static Helpers” on page 70.

-DadministrationURL=socket://{ADMIN_IP_ADDRESS}:{ADMIN_PORT}
-DserviceControlCommand={setup | refresh | shutdown | status}
-DnamedComponentType={EJB_REGISTRY_HELPER | CUSTOM_OBJECT_HELPER | STATIC_HELPER}
-DnamedSubComponent={SUB_COMPONENT_NAME}
[-DparameterData={PARAMETER_DATA}]

Code 6-1: Commands for Service Control
Chapter 6: Chordiant 5 Foundation Server Administration 67

Monitoring the Chordiant 5 Foundation Server System
• namedSubComponent is:

For a namedComponentType of:

— EJB_REGISTRY_HELPER: The CLASS_NAME of the Service.

— CUSTOM_OBJECT_HELPER: The PACKAGE_NAME plus "." plus the
CLASS_NAME of the CustomObject.

— STATIC_HELPER: The PACKAGE_NAME plus "." plus the CLASS_NAME of the
StaticHelper.

• PARAMETER_DATA is:

If provided, will be sent to the target subcomponent and be available within the
ServiceControlRequest.getBuffer() attribute.

The jxcore.jar file must be in the Java classpath for this to work.

Code Sample 6-2 provides an example of a command to refresh the ConfigurationHelper sent
through the command line utility.

Make sure that jxcore.jar is in the Java classpath.

On the server side, add these arguments to the command line (iii=IP address. ppp = port):

-Dchordiant.service.socketGatewayServiceIPAddress=iii

-Dchordiant.service.socketGatewayServicePort=ppp

Refer to “Using the Foundation Server SocketGatewayService” on page 151 and the annotations
within the utility file for additional information.

For other administrative tasks, refer to the Chordiant 5 Tools Platform Administration Manager Guide.

java -DadministrationURL=socket://localhost:7014 -DserviceControlCommand=status
-DnamedComponentType=STATIC_HELPER
-DnamedSubComponent=com.chordiant.core.configuration.ConfigurationHelper
com.chordiant.queue.test.ServiceControlCommander

Code 6-2: Using the Command Line Utility
68 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
Security and the Administrative Console

The Administrative Console uses the SocketGatewayService, which provides secure access to
clients within your internal trusted network. For additional information, refer to “Security and the
SocketGatewayService” on page 153.

Behavior of Services within the Administrative Console

Standard Behavior

As described above, here is a list of the standard behavior of services within the Administrative
Console:

• Setup — Sends the setup command.

• Shutdown — Sends the shutdown command.

• Status — Retrieves status for the selected objects.

• Refresh — Refreshes the selected objects.

Note: When you send a command, it affects that level, and any level below it. So if you
send a command to a component, it affects both the component and any
subcomponents it contains. If you send a command to a namespace, everything
within it is affected.

Clicking one of the four buttons on the Administrative Console—Setup, Shutdown, Refresh,
Status—effectively sends the corresponding service control command to the target service,
custom object, or static object. Within the target, this command can perform standard
functionality, as described above, or other behavior as written by the creator of the service, custom
object, or static object.
Chapter 6: Chordiant 5 Foundation Server Administration 69

Monitoring the Chordiant 5 Foundation Server System
Actual Behavior of Chordiant-Provided Services

This section provides a list of actual behavior from Chordiant-provided services within the
Administrative Console.

Notes: Services must be instantiated to appear within the Administrative Console.

The Administrative Console does not filter the components it displays. Not all
components that appear in the Administrative Console actually require use of the
Administrative Console. Components which you might use more frequently are
noted with an asterisk (*).

Any component which uses configuration is dependent on the
ConfigurationHelper. Refresh the ConfigurationHelper before refreshing the
other component.

Core Components

Static Helpers

• ClientAgentHelper — com.chordiant.service.clientagent.ClientAgentHelper
Refer to “ClientAgentHelper” on page 61 for details on this component.

— Setup: Reads the configuration values.

— Shutdown: Calls shutdown on all client agents within the cache.

— Refresh: Clears the client agent cache.

— Status: Returns ”OK”.

— Dependencies: Must refresh ConfigurationHelper before refreshing the
ClientAgentHelper.

Uses: You might want to refresh the ClientAgentHelper if you have added or
modified any services and don’t want to have to bring down the whole server. You
must refresh the ConfigurationHelper first to see the new client agents and services.
70 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
• ConfigurationHelper* — com.chordiant.core.configuration.ConfigurationHelper
Refer to “ConfigurationHelper” on page 46 for details on this component.

— Setup

Client side: Sets up communication to the server configuration.

Server side: Reads the configuration.

— Shutdown

Client side: Closes communication to the server.

Server side: Clears out the local cache of configuration values.

— Refresh

Client Side: Reconnects to server.

Server Side: Shuts down the server, then calls setup methods to clean out the local
cache. Then rereads the local configuration files.

— Status

Client Side: Returns nothing.

Server Side: Returns nothing. The client-side status command is not passed to the
server side.

Uses: Any time you change any configuration file, you can refresh the
ConfigurationHelper to reload the configuration settings without bringing down the
server. You must usually refresh the ConfigurationHelper before refreshing other
helpers.

• DeviceContextHelper* — com.chordiant.application.context.DeviceContextHelper
See also RequestContextMapperHelper on page 72.
Refer to “Understanding the Device Context Mapper Helper” on page 304 for details on this
component.

— Setup: No action.

— Shutdown: Not implemented.

— Refresh: Clears the device context mapping.

— Status: Not implemented.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service.

Uses: You can change the mapping for a certain device, for example, how some
content will appear for web-based clients, you can refresh the DeviceContextHelper to
implement these changes, rather than having to restart the server. You should refresh
the ConfigurationHelper before refreshing the DeviceContextHelper.
Chapter 6: Chordiant 5 Foundation Server Administration 71

Monitoring the Chordiant 5 Foundation Server System
• LogHelper* — com.chordiant.core.log.LogHelper
Refer to “LogHelper” on page 47 for details on this component.

— Setup: Reads configuration and reconfigures filters and writers.

— Shutdown: Clears out all log handlers.

— Refresh: Calls the shutdown, configurationLogSetup, then setup methods.

— Status: Returns “OK”.

— Dependencies: You must refresh the ConfigurationHelper before refreshing the
LogHelper.

Uses: You can change the level of logging in the LogHelper.xml file if, for example,
you want to debug a certain section of code. You can then refresh the
ConfigurationHelper and the LogHelper in the Administrative Console without having
to restart the server. When you have finished debugging, you can change the
configuration file and refresh again.

• NameServiceHelper — com.chordiant.service.NameServiceHelper
Refer to “Exploring the Primary Classes” on page 305 for details on this component.

— Setup: Initializes a new NameServiceJNDIHelper which makes a connection to JNDI.

— Shutdown: No action.

— Refresh: No action.

— Status: Returns “OK”.

• RequestContextMapperHelper* — com.chordiant.application.context.
RequestContextMapperHelper
See also DeviceContextMapper on page 71.
Refer to “Understanding Request Context Mapping” on page 290 for details on this
component.

— Setup: No action.

— Refresh: Clears the request context mapping.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service.

Uses: In the RequestContextMap, you can change the mapping of an ActionID to a
specific functionality. You can refresh the RequestContextMap to implement these
changes, rather than having to restart the server. You should refresh the
ConfigurationHelper before refreshing the RequestContextMapperHelper.

• SecurityHelper — com.chordiant.core.security.SecurityHelper
Refer to “Security Service” on page 61 for details on this component.

— Setup: Calls configuration then sets up security resources.

— Shutdown: Not supported for security reasons. Nothing happens when this
command is called.

— Refresh: Not supported for security reasons. Nothing happens when this command
is called. You can refresh (keep up-to-date) cached security data by using the
CacheMgr. See page 73 for information.
72 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
— ServiceControl: Status: Returns “OK”.

— Dependencies: SecurityHelper depends on the Cache Manager to be set up
successfully.

• TransformHelper — com.chordiant.core.transform.TransformHelper
Refer to “Transformation Helper” on page 284 for details on this component.

— Setup: Reads configuration values.

— Refresh: Makes new instance of the cache.

— Shutdown: Clears out template cache.

— Status: Returns “OK”.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service.

Uses: If you change the way that data is transformed from the payload, refresh the
TransformHelper to implement your change without shutting down the server.

Custom Objects

• CacheMgr — com.chordiant.userprofile.server

— Setup: No action.

— Shutdown: No action.

— Status: Shows “OK” if everything is running normally.

— Refresh: Forces the cache manager instance you selected to discard any cached data
and re-read data from database. Therefore, after this action, all cache data within this
instance become synchronized with data in the database. To refresh cache across the
cluster, you must refresh the cluster.

Uses: Use the CacheMgr to refresh any cached user profile data and access control
information. Currently, CacheMgr only manages cached security data, including
certain user profile data.
Chapter 6: Chordiant 5 Foundation Server Administration 73

Monitoring the Chordiant 5 Foundation Server System
• CustomObjectHelper
Refer to “CustomObjectHelper” on page 62 for details on this component.

Notes: Do not use the Administrative Console with the CustomObjectHelper. All
commands you send through it ripple through all of the custom objects in the
system, which include the socket gateway. If you shut down or refresh (which
involves shutting down) the CustomObjectHelper, you will shut down the
socket gateway. The Administrative Console works through the socket gateway,
so it will be shut down too, cutting off that communication. Nobody will be able
to send service controls after the socket gateway is shut down. The socket
gateway will restart itself, but you must restart the Administrative Console
manually.

For information on security of the Administrative Console, refer to “Security and
the SocketGatewayService” on page 153.

• SocketGatewayService —
com.chordiant.service.socket.gateway.SocketGatewayService
Refer to “Using the Foundation Server SocketGatewayService” on page 151 for details on this
component.

— Setup: Reads configuration and sets up communication socket.

— Shutdown: Shuts down communication socket and deletes administration file.
Automatically calls the setup function, so the socket is not down for long.

— Status: Returns detailed operational data.

— Refresh: Not supported.

Note: The Administrative Console runs through the SocketGatewayService. If you
shut it down, it will cut the connection from the Administrative Console to the
server. The SocketGatewayService will restart automatically, but you will have
to start the Administrative Console manually.
74 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
Custom Objects for Asynchronous Messaging

• OutboundMessageHelper — com.chordiant.service.customobjects.
OutboundMessageHelper
Refer to “Outbound Messages” on page 242 for details on this component.

— Setup: Reads the configuration and initializes the instance.

— Shutdown: Shuts down owned objects.

— Refresh: Calls shutdown method, followed by the setup method.

— Status: Sends a detailed operational message.

JMS sessions can be created when this custom object is setup and destroyed when it is
shutdown. This custom object can be enabled or disabled in the
outboundMessageHelper.xml configuration file.

Custom Objects for Queueing Services

The following four services are in the com.chordiant.queue.service.customobjects package.
All four services support the standard service control commands.

• PullQueueManager

— Processes service control events and responds with status messages. JMS sessions are
created when this custom object is set up and destroyed when it is shut down. The
JMS MessageListener interface is implemented by the PullQueueListener objects that
this custom object manages in an array, so there are threads actively listening for and
processing queue items (awaiting QueueDetermination having been injected by the
Queue API) when the PullQueueManager has been set up (and not when it is shut
down).

— Exercise extreme caution when changing the state of this custom object.

Uses:

If you lose your connection to JMS, you might want to send the Refresh command to
this custom object or use the Shutdown command followed by the Setup command.

In a development environment, if your database space fills up, an exception is
thrown. This causes the transaction to rollback. The queue will shut itself down and
report an error. You can use the Setup or Refresh commands to start the queue again.
Note that a well-managed production environment should not allow such database
problems.

Sending the Status command will list of the number of queue items processed
asynchronously for each of the System Pull Queue replicates, along with other queue
information.
Chapter 6: Chordiant 5 Foundation Server Administration 75

Monitoring the Chordiant 5 Foundation Server System
• PushQueueManager

— Processes service control events and responds with status messages. JMS sessions are
created when this custom object is set up and destroyed when it is shut down. The
JMS MessageListener interface is implemented by the PushQueueListener objects that
this custom object manages in an array so there are threads actively listening for and
processing queue items (awaiting QueueDetermination having been injected by the
Route API) when the PushQueueManager has been set up (and not when it is shut
down).

Exercise extreme caution when changing the state of this custom object.

Uses: Same uses as “PullQueueManager”.

• QueueAdminTopicListener

— Processes service control events and responds with status messages. JMS sessions are
created when this custom object is set up and destroyed when it is shut down. The
JMS MessageListener interface is implemented so this custom object actively listens
for and processes administration messages including the Queue count state
information when it has been set up (and not when it is shut down).

Exercise extreme caution when changing the state of this custom object.

Uses: Same uses as “PullQueueManager”.

• QueueTableManager

— Processes service control events and responds with status messages. Many JMS
sessions are created when this custom object is set up and are destroyed when it is
shut down. The QueueTableManager might count the JMS queues when it receives a
setup or refresh service control event or it might try and recover this state from
another Application Server replicate when running in a J2EE clustered environment.

Note: The queue items that reside in the JMS Queues are not accessible when this
custom object is shut down, starting up, or refreshing so Chordiant recommends
doing this as infrequently as possible in a live production environment.

Uses: If you change the queue definitions, you can refresh this custom object to bring
those changes into effect. However, care should be used in a production environment
because it can affect system performance and availability.
76 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
• SessionTopicListener —
com.chordiant.session.service.customobjects.SessionTopicListener

— Supports all four standard service control commands.

— Processes service control events and responds with status messages. JMS sessions are
created when this custom object is set up and destroyed when it is shut down. The
JMS MessageListener interface is implemented so this custom object actively listens
for and processes session messages including the session availability state
information when it has been set up (and not when it is shut down).

Exercise extreme caution when changing the state of this custom object.

• TimerCO — com.chordiant.timer.service.customobjects.TimerCO

— Processes service control events minimally with default messages.

— Setup: The timer engine is created when this custom object is set up, which
depending upon the configuration, might create sessions with the database through
JDBC. Timers can be created and/or fired when the TimerCO has been set up (and not
when it is shut down).

— Shutdown: Not functional.

— Refresh: Not functional.

— Status: Not functional.

Exercise extreme caution when changing the state of this custom object.

Uses: This custom object is started, like all other custom objects, when the application
server is started. The other service controls are not available on it. If you lose a
connection to the database, you must check it manually through standard J2EE
practices.
Chapter 6: Chordiant 5 Foundation Server Administration 77

Monitoring the Chordiant 5 Foundation Server System
Services

• HelloWorldService — com.hello.world.service.HelloWorldService
Refer to the Chordiant 5 Tools Platform Installation and Configuration Guide for details on this
component.

— Setup: Sends back an acknowledgement with the parameter data received.

— Shutdown: Sends back an acknowledgement with the parameter data received.

— Status: Sends back an acknowledgement with the parameter data received.

— Refresh: Sends back an acknowledgement with the parameter data received.

• PersistentCacheManager — com.chordiant.core.persistentcache.PersistentCacheManager
See also XMLStorageService on page 84.

— Setup: Gets configuration values and then resets state.

— Shutdown: Shuts down local connections and values.

— Refresh: Gets configuration values and then resets state.

— Status: Not implemented.

Uses: If you change the data source, or any of its parameters (like the password),
where Java objects are persisted, you can make the change in the configuration file,
then refresh the ConfigurationHelper and the PersistentCacheManager to implement
the change without restarting the server.

Chordiant Way Service

• CwapiService — com.chordiant.cwapi.service
Refer to the Chordiant 5 Foundation Server Business Process Server Developer’s Guide for details on
this component.

— ServiceControl Messages: Standard behavior for all.

Uses: You should not need to use service control on this service.
78 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
Chordiant Business Services
Refer to the Chordiant 5 Foundation Server Application Components Developer’s Guide for details
on these Chordiant-provided business services.

Note: Any service that sets up a Resource Manager has an indirect dependency on
ConfigurationHelper because the Resource Manager calls ConfigurationHelper
to read configuration data. You must refresh the ConfigurationHelper before you
refresh the target service, if you have updated that service’s configuration file.

• Uses:

Most Chordiant Business Services respond similarly to service control commands. This section
describes why you might want to issue commands to Chordiant business services:

— Setup: This command is automatically sent on initialization of the business service. It
gets the service ready for use, including setting up its corresponding Resource
Manager.

— Shutdown: Give this command to stop a specific service from running. You might
want to do this if, for example, you lose a connection and need to shut down a service
and set it up again. It is very rare that you would want to shut down a service and
most services do not respond to the shutdown command.

— Status: Give this command to find out if a service is still up and running. Services
that implement this command usually return “OK”.

— Refresh: Give this command if you have added something to the database directly
and want to reload the cache.

• AccountService — com.chordiant.bd.services.AccountService
EJBCMTRequired

— Setup: Initializes Resource Manager, gets an instance of account number generator,
gets a lock service, client agent, and a PartyRole client agent.

— Refresh: Not implemented

— Shutdown: No action.

— Status: No action.

— Refresh: No action.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• BusinessObjectFactoryService —
com.chordiant.bd.services.BusinessObjectFactoryService
EJBCMTRequired

— Setup: Initializes Resource Manager, parses and loads CMI file.

— Shutdown: No action.

— Refresh: Not implemented.
Chapter 6: Chordiant 5 Foundation Server Administration 79

Monitoring the Chordiant 5 Foundation Server System
— Status: No action.

— Refresh: No action.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• DeliveryService — com.chordiant.bd.services.DeliveryService
EJBCMTRequired

— Setup: Not implemented.

— Refresh: Not implemented.

— Shutdown: Not implemented.

— Status: Not implemented.

— Refresh: Not implemented.

— Dependencies: com.chordiant.bd.services.OrderGenerationService references one
its fields. (See also page 82.)

• EbcInteractionService — com.chordiant.bd.services.EbcInteractionService
EJBCMTRequired

— Setup: Sets up Resource Manager, configures PMFCustomer and other client agents.

— Refresh: Not implemented.

— Shutdown: Not implemented.

— Status: Not implemented.

— Refresh: Not implemented.

• GenericService — com.chordiant.bc.services.GenericService
EJBCMTRequired

— Setup: Initializes Resource Manager.

— Shutdown: No action.

— Refresh: Not implemented.

— Status: No action.

— Refresh: Refreshes Behavior Factory and Validator Factory. Clears cache.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• GuideService — com.chordiant.bd.services.GuideService
EJBCMTRequired

— Setup: Sets up ResourceManager.

— Refresh: Standard behavior.

— Shutdown: Standard behavior.

— Status: Standard behavior.

— Refresh: Clears cache.
80 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
• InventoryService — com.chordiant.bd.services.InventoryService
EJBCMTRequired

— Setup: Sets up ResourceManager.

— Refresh: Not implemented.

— Shutdown: Not implemented.

— Status: Not implemented.

— Refresh: Not implemented.

— Dependencies: com.chordiant.bd.services.OrderGenerationService

• LocationService — com.chordiant.bd.services.LocationService
EJBCMTRequired

— Setup: Sets up ResourceManager.

— Refresh: Standard behavior.

— Shutdown: Standard behavior.

— Status: Standard behavior.

— Refresh: Clears cache.

• LockService — com.chordiant.lock.service.LockService
EJBBMT

— Setup: Loads configuration data and gets a database connection pool.

— Shutdown: Releases database connection pool.

— Refresh: Not implemented.

— Status: Lists current locked objects.

— Refresh: Releases database connection pool, reloads configuration data, and gets a
database connection pool.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• NumberGenerationService — com.chordiant.bd.numberGeneration.
NumberGenerationService
EJBBMT

— Setup: Sets up ResourceManager.

— Shutdown: Not implemented.

— Refresh: Not implemented.

— Status: No action.

— Refresh: Clears cache.

— Dependencies: Its own client agent has a reference to one of its fields.
Chapter 6: Chordiant 5 Foundation Server Administration 81

Monitoring the Chordiant 5 Foundation Server System
• OfferingService — com.chordiant.bd.services.OfferingService
EJBCMTRequired

— Setup: Sets up Resource Manager, reads transaction DSN, and creates connection
pool.

— Shutdown: Clears connection pool.

— Refresh: Not implemented.

— Status: Not implemented.

— Refresh: Clears cache.

• OrderFullfillmentService —
com.chordiant.bd.services.OrderFullfillmentService
EJBCMTRequired

— Setup: Initializes Resource Manager, caches instance of PmfCustomer client agent.

— Shutdown: Not implemented.

— Refresh: Not implemented.

— Status: Not implemented.

— Refresh: Clears cache.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• OrderGenerationService — com.chordiant.bd.services.OrderGenerationService
EJBCMTRequired

— Setup: Initializes Resource Manager, caches instance of delivery/product/inventory
client agent, obtains number generator for order item and return merchandise.

— Shutdown: Nothing.

— Refresh: Not implemented.

— Status: Nothing.

— Refresh: Clears cache.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file. See also Delivery Service
on page 80.
82 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
• OrderTrackingService — com.chordiant.bd.services.OrderTrackingService
EJBCMTRequired

— Setup: Initializes Resource Manager.

— Shutdown: Not implemented.

— Refresh: Not implemented.

— Status: Not implemented.

— Refresh: Not implemented.

— Dependencies: Must refresh the ConfigurationHelper first before you can refresh this
service, if you have updated that service’s configuration file.

• PartyRoleService — com.chordiant.pmf.service.PartyRoleService
EJBCMTRequired

— Setup: Sets up Resource Manager, makes data cache, stores it with Resource Manager.

— Shutdown: No action.

— Status: No action.

— Refresh: No action.

• PmfCustomerService — com.chordiant.customer.service.PmfCustomerService
EJBCMTRequired

— Setup: Sets up Resource Manager.

— Shutdown: No action.

— Status: No action.

— Refresh: No action.

• ProductService — com.chordiant.bd.services.ProductService
EJBCMTRequired

— Setup: Sets up Resource Manager, user name, password, and PartyRoleClientAgent

— Shutdown: No action.

— Status: No action.

— Refresh: Clears cache.

— Dependencies: Referenced by OrderGenerationService for its constants fields.(See
also page 82.)
Chapter 6: Chordiant 5 Foundation Server Administration 83

Monitoring the Chordiant 5 Foundation Server System
• XMLStorageService — com.chordiant.xmlstorage.service.XMLStorageService
EJBCMTRequired
See also PersistentCacheManager on page 78.

— Setup: Sets up Resource Manager.

— Shutdown: No action.

— Refresh: Standard behavior.

— Status: Not functional.

Uses: If you change the data source where XML objects are persisted, or any of its
parameters (such as the password), you can make the change in the configuration file,
then refresh the ConfigurationHelper and the XMLStorageService to implement the
change without restarting the server.

CTI Services

• CTI Container Service — com.chordiant.systemServices.ctiserver.CtiContainerService

— Setup: Creates the number of CTI containers specified in the
TelephonyService.xml configuration file. Registers the CTI containers with JNDI
and stores the containers in a Vector. Initializes the next available container attribute.

— Shutdown: Deregisters the CTI containers from JNDI. Calls shutdown on the CTI
containers and destroys the object.

— Refresh: Performs a shutdown, followed by a setup.

Making a change to the number of CTI containers in the TelephonyService.xml,
requires a refresh of the ConfigurationHelper first.

— Status: Returns the String “running {time stamp}” if a connection to the CTI Container
Service is established.

— Dependencies: Refreshes the ConfigurationHelper before refreshing the CTI
Container Service.

Uses: You might want to refresh this service if you have added extensions to your
system and this requires an increase in the number of CTI containers. The number of
CTI containers is set in the TelephonyService.xml file. Refresh the
ConfigurationHelper first, then refresh this service.
84 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
• VRU Socket Service — com.chordiant.businessServices.ctiServices.VruSocketService

— Setup: Starts up the VRU Socket Service. When this is called, it creates a socket server
that waits for client socket connections from the VRU.

— Shutdown: Shuts down the socket server created in the setup command.

— Refresh: Shuts down the socket server, re-initializes all variables, and starts up the
socket server.

To change the port number for the socket service, it must be changed on the command
line and the server must be brought down and back up again.

— Status: Returns the String “running {time stamp}” if a connection to the VRU Socket
Service is established.

Uses: If you have changed any offerings, you might want to refresh this service to
refresh the offerings cache. You might also want to refresh this service if you require a
new VRURequestHandler.

Queuing Services

• QueueService — com.chordiant.queue.service
EJBCMTRequired

— ServiceControl Messages: Standard behavior for all

• SessionService — com.chordiant.session.service
EJBBMT

— ServiceControl Messages: Standard behavior for all

• TimerService — com.chordiant.timer.service
EJBCMTRequired

— ServiceControl Messages: Standard behavior for all

Uses: These services depend on the custom objects listed in “Custom Objects for
Queueing Services” on page 75. Refer to the individual custom objects in that
stationery more information.

Multiple Application Server JVMs and
SocketGatewayService

If you have multiple application server JVMs, the administrative console must be aware of all the
JVMs that exist in the namespace—that is, all of the JVMs within the application server cluster. For
this to happen, all the JVMs should have access to a common mounted directory, so a unique file
with associated connection information for each JVM can be created in this directory. Therefore,
the number of files is this directory is the same as the number of JVMs in that cluster. This
directory can be specified using the following server-side command line property:

-Dchordiant.administration.directory=xxx
Chapter 6: Chordiant 5 Foundation Server Administration 85

Monitoring the Chordiant 5 Foundation Server System
Each JVM in the cluster listens on a different IP address and port number. The Administrative
Console needs to connect to only one of the JVMs, so any IP address and port number will be
sufficient. From that information, the other JVMs can be retrieved. Refer to the next section,
“Configuring a Cluster Environment for Use with the Administrative Console” on page 88, for
details on setting this up.

Each time you do a cold start on the cluster, a time-stamped instance file for a JVM will be created
in that directory. If you bring down the system and restart it, other unique instance files will be
created. The Administrative Console will only process the most recently time-stamped instance
file for a JVM, so if you restart with fewer JVMs in your cluster the Administrative Console will
think there are more replicates than there really are, unless the old ones are cleaned up first.
Regardless, the number of these files will grow over time and you should periodically clean up the
instance files.

As shown in Figure 6-1 on page 65, multiple arbitrary JVMs can exist in a group. The name of the
group for a specific JVM can be specified using the following server-side command line property:

-Dchordiant.administration.group=xxx

If nothing is specified, the name of the group is default. For example, if you chose abc as your
group name, -Dchordiant.administration.group=abc, the hierarchy would look like this:

NameSpace

-abc

-JVM1

 -Custom Object

 -Static helpers

 -Services

JVM2

 -Custom Object

 -Static helpers

 -Services
86 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
You could also have multiple groups.

Figure 6-3 on page 88 is for the namespace socket://engibm03:7014.

NameSpace

-abc

-JVM1

-Custom Object

-Static helpers

-Services

JVM2

-Custom Object

-Static helpers

-Services

NameSpace

-xyz

-JVM1

-Custom Object

-Static helpers

-Services

JVM2

-Custom Object

-Static helpers

-Services
Chapter 6: Chordiant 5 Foundation Server Administration 87

Monitoring the Chordiant 5 Foundation Server System
The group is default and there are two JVMs. They are:

• default_engibm03_204.162.92.117_1516095122_204.162.92.117_7015

• default_engibm03_204.162.92.117_1516095370_204.162.92.117_7014

Figure 6-3: Administrative Console Showing a Specific Namespace Socket

Configuring a Cluster Environment for Use with the
Administrative Console

Chordiant’s Administrative Console and other applications look in the specified location that is
given in the custom parameters of the JVM. During this setup, you will set up each JVM to enable
unique administration through Chordiant’s Administrative Console. Reading the previous
section, “Multiple Application Server JVMs and SocketGatewayService” on page 85, will give you
background on this setup.

To configure a cluster environment that can be under administrative control:

1. On one computer in the cluster, share the existing JXAdmin directory, for example,
{CHRD_EAR_DEPLOYED}/jxadmin.

2. Mount this directory on all the nodes in the cluster in the same location:
{CHRD_EAR_DEPLOYED}/jxadmin.
88 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
3. After making the clones for the cluster, bring up the custom parameters for each application
server clone. To open the custom parameters, select: Application Servers | {clone number} |
Process Definition | Java Virtual Machine | Custom Parameters.

Coordinate these custom parameters:

— Administrative Console port [administrationURL]: This URL is used by the
Chordiant Administrative Console and must be unique for each application server.

— VRU port [Chordiant.ctiServices.vruSocketServerPort]: This is used by the CTI
Service. By default, this number is one greater than the value for the Administrative
Console port, described above, but can vary depending on your system setup.

— Administrative Service Port: [Chordiant.service.socketGatewayServicePort]: This
should match the Administrative Console URL's port number described above. It is
used by the Chordiant Administrative Console to send requests, like Refresh Queues,
across the cluster. This port is also used by the CTI Service.

— Administrative Console Directory [chordiant.administration.directory]: The
directory where the Administrative Console resides on the computer. By default, this
value is {CHRD_EAR_DEPLOYED}/jxadmin.

Set these configuration parameters:

— instance number [com.chordiant.instance]: Each application server clone must have
a unique instance number. This number should be incremented by one for each
application server clone, in the order of starting sequence.

The number of clones in the cluster must be reflected in the master.dtd file for the
application EAR. In the master.dtd file for the application EAR, update the default
entry value

to include the actual number of clones in the cluster.

The master.dtd file is located in the
{APP_SERVER_INSTALL}/AppServer/installedApps/{Cell Name}/
ChordiantEAR/config/Chordiant/ directory.

For example, for Cell_01 on WebSphere, the master.dtd would be located in
/usr/Was51/WebSphere/AppServer/installedApps/Cell_01/
ChordiantEAR/config/Chordiant

— Number of CTI Managers [NumberOfCtiManagers]: This is related to the number of
application server clones and is specified in the TelephonyService.xml
configuration file.

<!ENTITY MAXIMUM_INSTANCES "1">
Chapter 6: Chordiant 5 Foundation Server Administration 89

Monitoring the Chordiant 5 Foundation Server System
This example shows use of the ports and instances involved:

The default name of the Chordiant Application Server is ChordiantAppServer, but for clarity we
will call it Node01_Clone01.

On Node01, there are two clones:

On Node02, there is one clone:

NODE01 CLONES

Node01_Clone01

administrationURL http://localhost:8010

Chordiant.ctiServices.vruSocketServerPort 8011

Chordiant.service.socketGatewayServicePort 8010

com.chordiant.instance 1

chordiant.administration.directory {CHRD_EAR_DEPLOYED}/
jxadmin

Node01_Clone02

administrationURL http://localhost:8012

Chordiant.ctiServices.vruSocketServerPort 8013

Chordiant.service.socketGatewayServicePort 8012

com.chordiant.instance 2

chordiant.administration.directory {CHRD_EAR_DEPLOYED}/
jxadmin

Code 6-3: Node01 Clone

NODE02 CLONE

Node02_Clone01

administrationURL http://localhost:8014

Chordiant.ctiServices.vruSocketServerPort 8015

Chordiant.service.socketGatewayServicePort 8014

com.chordiant.instance 3

chordiant.administration.directory {CHRD_EAR_DEPLOYED}/
jxadmin

Code 6-4: Node02 Clone
90 Foundation Server Developer’s Guide, release 5.7

Monitoring the Chordiant 5 Foundation Server System
In addition, we took these actions:

1. For each node, update the maximum number of instances to equal the total number of clones
in the cluster. In our example, there are two nodes with a maximum of three clones. On
Node01 and Node02 in the {APP_SERVER_INSTALL}/AppServer/installedApps/
{Cell Name}/ChordiantEAR/config/Chordiant/master.dtd file. We updated the
maximum instances to the total count in our example below using this value:

2. The number of containers in the CTI container system is related to performance: with too few
containers, the performance degrades as the system looks for a free container. The number of
containers created in the system should be at least the maximum number of agents using CTI
at any one time, plus 10%. Creating 20% to 25% more containers than needed ensures a fast
response when attempting to find a free container.

In our example, let’s say we will have 1500 users and we already have three clones set up.
Each clone will have its own set of CTI containers, so we’ll divide 1500 users by 3 clones. Each
clone requires 500 containers. So we will add 10% more, for a total of 550 CTI containers.

For each clone, in the TelephonyService.xml file, located in
{APP_SERVER_INSTALL}/AppServer/installedApps/
{Cell Name}/ChordiantEAR/config/Chordiant/components/master, we set this
value:

For more information on CTI settings, refer to the Chordiant 5 Foundation Server Telephony
Integration Guide.

For more information on the SocketGatewayService, refer to “Using the Foundation Server
SocketGatewayService” on page 151.

<!ENTITY MAXIMUM_INSTANCES "3">

 <Tag>NumberOfCtiManagers
 <Value>550</Value>
 </Tag>
Chapter 6: Chordiant 5 Foundation Server Administration 91

Exceptions and Error Handling
EXCEPTIONS AND ERROR HANDLING

In general, the JX infrastructure communicates errors to the user via exceptions. Exceptions can
travel from service to client, and vice versa. If there is an error in a remote service, it is made
apparent to the client.

ChordiantBaseException

Chordiant has a defined base exception for use with the JX EJB.

Within your services, we recommend that you subclass from the ChordiantBaseException for all
of your errors to be marshalled through the application server between the client and server. If
you do not extend the ChordiantBaseException, your errors might be treated differently,
depending on the application server you are using. Only by extending the
ChordiantBaseException can you depend on your errors getting through the application server
intact.

This is true for all bean managed transactions (BMTs). Container managed transactions (CMTs)
should also use the ChordiantBaseException, but must follow additional exception handling.
Refer to “Configuring for Rollbacks” on page 122 for more information.

Business Service Client Agent Error Handling

The processRequest method of the ClientAgentBaseClass returns a java.lang.Throwable object if
an exception is raised. If the Throwable is one of the exceptions defined in the business service
client agent’s API, that client agent will recast the Throwable as the appropriate exception. If that
is not possible, and the Throwable is not a simple Error or RuntimeException, the client agent
returns a com.chordiant.service.ChordiantRuntimeException object that wraps the Throwable
object.

EJB Exceptions

If you want to throw an EJB exception from a service, for example during a container managed
transaction (CMT), subclass from the com.chordiant.service.ChordiantBaseEJBException class.

package com.chordiant.service.ejb;

import javax.ejb.EJBOblect;
import java.rmi.RemoteException;

import com.chordiant.service.ChordiantBaseException

public interface EJBGatewayService extends EJBObject
{

String processRequestXMLString(String request)
throws RemoteException, Exception, ChordiantBaseException;

Object processRequestObject(Object inputData)
throws RemoteException, Exception, ChordiantBaseException;

}

92 Foundation Server Developer’s Guide, release 5.7

Exceptions and Error Handling
Socket Protocol Exceptions

If you are contacting the JX EJB through sockets, exceptions are handled differently than those
encountered when working through the native Application Server protocol, as described above.

The Foundation Server socket protocol does not support the transport of the entire native
server-side exception. It repackages the server-side exception in a ServiceException and preserves
the original message text.

This only affects development environments. Production environments would not use sockets,
but use native Application Server protocol.

For more information on using sockets, refer to “Using the Foundation Server
SocketGatewayService” on page 151.
Chapter 6: Chordiant 5 Foundation Server Administration 93

Exceptions and Error Handling
94 Foundation Server Developer’s Guide, release 5.7

Chapter 7
Configuration Files
Configuration files control all Chordiant 5 Foundation Server applications. They are simple files,
written in XML, not in a proprietary format. There is a single master.xml file and several
additional files under the {CHORDIANT_ROOT}/config/Chordiant/components/master
directory which are provided with Chordiant 5 Foundation Server. You can use additional
components/{component}.xml files to overlay or add to the master XML configuration files.
There are also an unlimited number of {nodename}.xml files which you can add for each node
to further customize your applications. Sitemaster.xml overrides the master configuration
files (including master.xml and components/master files) and any
components/{component}.xml files.

Notes: Do not to alter the master.xml or components/master files. Make any
modifications in components/{component}.xml, {nodename}.xml, or
sitemaster.xml files.

{CHORDIANT_ROOT} corresponds to the
chordiant.configuration.configurationRootDirectory parameter in your
application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

For details on editing the configuration files, refer to “Adding Components through
Configuration” on page 101.

Configuration files are located in {CHORDIANT_ROOT}/config/Chordiant and
{CHORDIANT_ROOT}/config/Chordiant/components directories.

A few of the many uses of the configuration files are:

• Services look in the configuration files for specific sections where they can find information.

• Client agents look in the configuration files for a list of all the available services.

• The ClientAgentHelper looks in the configuration files for a list of all available client agents.
95

Chordiant XML Configuration File Style
CHORDIANT XML CONFIGURATION FILE STYLE

All Chordiant XML configuration files (including master.xml, components/master files,
components/{component}.xml, {nodename}.xml, and sitemaster.xml) have the
following styles in common:

• All are well-formed XML files.

• All are case-sensitive.

• All XML files are nested, consisting of Sections, Tags, and associated Values. Sections contain
Tags, which include configuration Values for various elements. Elements for service,
clientagent, and Log Sections also need entries in enumeration Sections at the start of the
configuration files (see next bullet). Other elements do not need enumeration Sections. (Refer
to Code Sample 7-1 for an example of enumeration and configuration Sections.)

• All XML files dealing with service, clientagent, and Log must contain enumeration
Sections. These are special Sections which list all of the service, clientagent, and log elements
which will be Sections later in the configuration file. These enumerations are almost like a
table of contents to the rest of the Sections. There are currently three enumeration Sections:
service, clientagent, and Log. Other types of configuration information do not require
enumeration. (Refer to Code Sample 7-1.)

Code Sample 7-1 is a sample Section of the loghelper.xml file. Labels for Sections, Tags, and
Values are shown in bold. The Log enumeration Section is shown first, followed by an attributes
Section.

Code 7-1: Excerpts from the loghelper.xml File

<Section> Log
<Tag>log.Filter

<Value>FilterOne</Value>
</Tag>

</Section>
<Section>FilterOne

<Tag>filterclass
<Value>com.chordiant.core.log.LogFilter</Value>

</Tag>
<Tag>criteria

<Value>com</Value>
</Tag>
<Tag>level

<Value>error</Value>
</Tag>

</Section>
96 Foundation Server Developer’s Guide, release 5.7

Master Configuration Files
• All Section names must be unique across all configuration files, unless you are
intentionally overriding settings (refer to the note on page 97). Within the enumeration
Section, Tags should begin with {XML file}, not master, as shown here and in Code Sample 7-2:

— services: {XMLfile}.name

— client agents: {XMLfile}.agent

— logging: {XMLfile}.filter

Note: When you want to override settings in one configuration file with Values from
another configuration file (like sitemaster.xml), use the same Section and
Tag names, but assign a different Value for the setting you are overriding. For
information on overriding settings, refer to “components/{component}.xml” on
page 98.

• For some attributes, there are length limitations. Service and client agent Tags are limited to
80 characters.

MASTER CONFIGURATION FILES

There are two types of master configuration files: master.xml and components/master.

Notes: Do not modify the master.xml or components/master files. Use
additional files described in the following sections to specify configuration
settings.

The master.dtd contains values that are used throughout the XML
configuration files. This file is meant to be altered. For more information, refer to
“master.dtd” on page 99.

The master.xml file is the standard starting point for the Chordiant 5 Foundation Server. It
contains the basic configuration for the system.

components/master is a directory full of standard configuration files, grouped by functionality.
As described below, you can add configuration files to the components directory, but you should
not add to or modify the contents of the components/master directory.

<Section> Log
<Tag>mycomponentXML.Filter

<Value>FilterTwo</Value>
</Tag>

</Section>

Code 7-2: Sample Configuration File Section Showing Proper Naming Style
Chapter 7: Configuration Files 97

Master Configuration Files
components/{component}.xml

We recommend that you make all modifications outside the master.xml and
components/master configuration files. You can use component files to override or append to
master XML configuration files. For example, if you want to change the way the logging Section
works, you can make a logging.xml file (or another name of your choosing) to override that
Section of master XML configuration files. Component files can have one or more Sections.

Notes: When adding your own XML files, be sure to conform to the styles described in
“Chordiant XML Configuration File Style” on page 96.

To override a Section in a master configuration file, use the same Section name
and Tag name, but assign a different Value to the Tag.

You might choose to overwrite most of a {component}.xml file. In which
case, you can copy the configuration file from the components/master
directory to another directory, and make your minor modifications there. In this
case, be sure to update the relative path to the master.dtd file. Refer to
“master.dtd” on page 99 for more information.

Add your {component}.xml files in the {CHORDIANT_ROOT}/config/
Chordiant/components directory. At startup, master.xml and components/master
configuration files are loaded into cache, then all of the files within the component directory are
loaded into cache.

• If the component files have Sections which appear in the master configuration files
(master.xml and components/master), those master configuration Sections are overwritten
with the component settings.

• If the component files have Sections which do not appear in master configuration files
(master.xml and components/master), those Sections are appended to the configuration in
the cache.

Note: The last configuration file to be read overlays any previously-read values. Refer to
“ConfigurationHelper” on page 101 for the order in which all configuration files
are read and overlaid.

Component files are overridden by the sitemaster.xml file, described in the next section.
98 Foundation Server Developer’s Guide, release 5.7

Master Configuration Files
sitemaster.xml

The sitemaster.xml file overrides the master configuration files (master.xml and
components/master) and any {component}.xml files. It gives the site system administrator
final control over the configuration. This administrator can specify any settings that are essential
to the site, even if that means resetting a {component}.xml file’s specifications.

If you choose to create a sitemaster.xml file, add it to the
{CHORDIANT_ROOT}/config/Chordiant directory.

You do not have to include all Sections and Tags from the master.xml or {component}.xml
files in the sitemaster.xml file. You should only include the specific Sections and Tags that you
want to specify as different from those in the other XML configuration files.

Notes: Settings in the sitemaster.xml file cannot be overridden by any other XML
configuration file.

When adding your own XML files, be sure to conform to the styles described in
“Chordiant XML Configuration File Style” on page 96.

{nodename}.xml

The nodename is the name of a computer. You can make as many additional {nodename}.xml
files as you want — each named after the computer which it affects. For example, you might have
files on the main server called Cupertino1.xml or BostonServer5.xml. This customizes users’
experiences from different locations. These additional XML files add to and override the
information in cached configuration files (including master.xml, components/master files,
{component}.xml, and sitemaster.xml) at runtime. {nodename}.xml files are located in
{CHORDIANT_ROOT}/config/Chordiant.

Notes: When adding your own XML files, be sure to conform to the styles described in
“Chordiant XML Configuration File Style” on page 96.

master.dtd

The master.dtd (document type definiton) file contains information that can be referenced in
one or more XML configuration files. To make changes to the configuration, you only need to
change the definition in the master.dtd file. The change will then ripple through any XML
configuration files which point to the master.dtd.

The master.dtd file is located in {CHORDIANT_ROOT}/config/Chordiant/
components/master, along with the master.xml file.
Chapter 7: Configuration Files 99

Master Configuration Files
Referencing master.dtd

To have an XML configuration file point to the master.dtd, you must specify these lines at the
top of the XML file, before the <ROOT> tag.

Be sure to indicate the relative location of the master.dtd file by using the appropriate number
of dots and slashes. In this example, the XML file is two directories below the master.dtd.

Syntax

Within the XML configuration file, to specify a value from the master.dtd file, you must use this
syntax:

Each entity name must begin with an ampersand (&) and end with a semicolon (;). If you have
more than one entity name within the value, the names are separated by an additional semicolon,
as shown here:

Example

The SecurityManager.xml file points to several values within the master.dtd file. Here is one
Tag for the authentication port number.

The corresponding tag can be found in the master.dtd file:

So the value for the authentication port number in the Security Manager will be 1389.

Note: You can see the real values substituted for the master.dtd entities if you open
the XML configuration files within a web browser. If you open them in a text
editor, you will see the pointers to the master.dtd file.

If you change values in the master.dtd file, go to the Administrative Console to refresh the
ConfigurationHelper. For information on the Administrative Console, refer to “Chordiant 5
Foundation Server Administration” on page 63.

<?xml version="1.0"?>
<!DOCTYPE Root SYSTEM "../../master.dtd">
<Root>

<Value>&entityName;</Value>

<Value>&entityName;;&entityName;</Value>

<Tag>authenticationPortnumber

<Value>&SECURITY_AUTHENTICATE_PORT;</Value>

</Tag>

<!ENTITY SECURITY_AUTHENTICATE_PORT "1389">
100 Foundation Server Developer’s Guide, release 5.7

Adding Components through Configuration
ConfigurationHelper

This utility reads information directly from the combined view of the configuration files and
returns it to other tools within the Chordiant 5 Foundation Server.

On startup, the ConfigurationHelper performs these steps to create the combined configuration
view:

1. Reads master.xml into memory.

2. Overlays and merges the in-memory master.xml with all the XML files in
{CHORDIANT_ROOT}/config/Chordiant/components/master directory.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration.configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

3. Overlays and merges the in-memory master.xml with all the XML files in
{CHORDIANT_ROOT}/config/Chordiant/components directory.

4. Overlays and merges the in-memory master.xml with sitemaster.xml.

5. Overlays and merges the in-memory master.xml with {nodename}.xml, if available.

Refer to “GatewayHelper” on page 60 for more information.

ADDING COMPONENTS THROUGH CONFIGURATION

You must configure the Chordiant 5 Foundation Server system to include information about new
applications, services, and other components that you develop to run with the system. You do this
by adding component files to override the master.xml and components/master configuration
files.

The master.xml and components/master files control the configuration for the entire system.
You can also create an unlimited number of components/{component}.xml and
{nodename}.xml files which add to and override the settings in the master XML configuration
files. For more information, refer to “Configuration Files” on page 95.

Note: Do not change the master.xml or components/master files. Make your
modifications by adding {component}.xml files in the
{CHORDIANT_ROOT}/config/Chordiant/components directory or
adding a sitemaster.xml file to the
{CHORDIANT_ROOT}/config/Chordiant directory.

To avoid modifying the master.xml or components/master files, use a text editor to copy the
Section you want to modify or enhance. Paste it into a new document and save it as
{component}.xml, where {component} is a name you choose to describe this Section, often the
name of a service or functionality. If you do this, be sure to update the relative path to the
master.dtd file, as described in “Referencing master.dtd” on page 100.
Chapter 7: Configuration Files 101

Adding Components through Configuration
You can also edit the {nodename}.xml or sitemaster.xml file directly.

To configure the system for your new components:

1. Locate <Section>clientagents in the configuration file. Copy the entire Section and paste it
into a new XML document which you can modify. Here, we’ll call that file
TestClientAgents.xml.

To add Services, proceed directly to Step 4 on page 103.

For example, to add information about two Client Agents, TestClientAgent and
TestClientAgent2, add Code Sample 7-3 to a new TestClientAgents.xml file.

Notes: Tags within this enumeration Section should be named after the name of your
XML configuration file. Here, they are named after the file
TestClientAgents.XML. This ensures that they will not conflict with
standard client agents provided in master.xml or components/master
files.

Values for client agents are limited to 80 characters.

<Section>clientagents

<Tag>TestClientAgents.agent

<Value>TestClientAgent</Value>

</Tag>

<Tag>TestClientAgents.agent

<Value>TestClientAgent2</Value>

</Tag>

</Section>

Code 7-3: Adding ClientAgent Configuration Information
102 Foundation Server Developer’s Guide, release 5.7

Adding Components through Configuration
2. Add new Sections (child sections of root) to the TestClientAgents.xml configuration file to
further define the client agents.

For example, to include additional information about TestClientAgent and TestClientAgent2,
add Code Sample 7-4 to the new TestClientAgents.xml configuration file, below the
enumeration Section you created in Step 1.

Notice that the stubtype must be one of the configured stub types, in this case EJBStub. For
more information, refer to “Transactions in Chordiant Foundation Server” on page 118 and
“Configuring SmartStubs” on page 124.

3. Save and close the TestClientAgents.xml file.

4. Locate <Section>services in the master.xml configuration file or in one of the
config/components/master configuration files. Copy the Section and paste it into a new
XML document which you can modify. Here, we’ll call that file TestServices.xml.

If you are not adding services, continue with Step 7 on page 104.

For example, to add information about two services, TestService and TestService2, add Code
Sample 7-4 to the new TestServices.xml configuration file.

Notes: Tags within this enumeration Section should be named after the name of your
XML configuration file. Here, they are named after the file
TestServices.xml. This ensures that they will not conflict with standard
services provided in master.xml.

Values for services are limited to 80 characters.

<Section>TestClientAgent
<Tag>classname

<Value>test.jx.simple.TestClientAgent</Value>
</Tag>
<Tag>stubtype

<Value>EJBStub</Value>
</Tag>

</Section>
<Section>TestClientAgent2

<Tag>classname
<Value>test.jx.simple.TestClientAgent2</Value>

</Tag>
<Tag>stubtype

<Value>EJBStub</Value>
</Tag>

</Section>

Code 7-4: Adding Detailed ClientAgent Configuration Information

<Tag>TestServices.name
<Value>TestService</Value>

</Tag>
<Tag>TestServices.name

<Value>TestService2</Value>
</Tag>

Code 7-5: Adding Service Configuration Information
Chapter 7: Configuration Files 103

Adding Components through Configuration
5. Add new Sections (child sections of root) to the TestServices.xml configuration file to
further define the services.

For example, to include additional information about TestService and TestService2, add
Code Sample 7-6 to the TestServices.xml configuration file, below the enumeration
Section you created in Step 4.

Notice that you must specify whether the service is to be in the JX EJB deployed as a Bean
Managed Transaction (BMT) or a Container Managed Transaction Required type
(CMTRequired). For more information, refer to “Transactions with the JX EJB” on page 20.

6. Save and close the TestServices.xml file.

Note: The default security setting enables all users to call all APIs on all services.
Therefore, without doing anything, your new service is accessible to all users, so
you should be able to test it easily. To add access control to your services, follow
the steps defined in “Adding a New Service as a Resource” on page 271.

7. At this point, you need to deploy your service code (as JAR files or class files) and make it
available to the application server. You might have to restart the application server,
depending on how you deployed your service code and how you defined the class path on the
application server.

8. Run your client application.

9. Verify the output of your application, if applicable.

<Section>TestService
<Tag>classname

<Value>test.jx.simple.TestService</Value>
</Tag>
<Tag>ConnectionName

<Value>EJBBMT</Value>

 -- OR --

<Value>EJBCMTRequired</Value>
</Tag>

</Section>
<Section>TestService2

<Tag>classname
<Value>test.jx.simple.TestService2</Value>

</Tag>
<Tag>ConnectionName

<Value>EJBBMT</Value>

 -- OR --

<Value>EJBCMTRequired</Value>
</Tag>

</Section>

Code 7-6: Adding Detailed Service Configuration Information
104 Foundation Server Developer’s Guide, release 5.7

Auditing for Performance
10. Verify the output of the J2EE Application Server.

Note: How you deploy your project depends on the application server you are using.
Refer to your application server’s documentation for details on deploying.

AUDITING FOR PERFORMANCE

When you are testing your new additions to the system, you will probably want to use auditing to
test your additions. This is done through configuration.

Note: We advise that you do not alter the master.xml or component/master
files. Make any additions and modifications in
component/{component}.xml, {nodename}.xml, or
sitemaster.xml files. Refer to “Configuration Files” on page 95 and “Adding
Components through Configuration” on page 101 for details.

distributedaudit

The distributedaudit function provides performance information in addition to standard
performance logging. For information on performance logging, refer to “Performance” on page
50.

Note: You should only use the distributedaudit function as an initial indicator of
performance problems. It should not be turned on in a deployment environment.

Use the distributedaudit Section of the performance.xml configuration file to create a log
message that includes the service, function, duration, and message size (in characters).
Chapter 7: Configuration Files 105

Auditing for Performance
Figure 7-1 illustrates an application calling a client agent. The client agent calls across the network
to a service in an EJB. As part of its function, the service then queries a database.

Figure 7-1: Sample Interaction Audited by distributedaudit

It is helpful to use distributedaudit to measure:

• Client-Side Timing — Client agent calling the service and then receiving a call back,
illustrated in Figure 7-1 as Point A to Point B. This includes time spent querying the database
as well as the time spent over the network between the client agent and the service.

• Server-Side Timing — Service receiving a call from the client agent and then returning the
call back to the client agent, illustrated in Figure 7-1 as Point X to Point Y. This isolates the time
spent performing the function on the service.

Controlling distributedaudit

You control the distributedaudit functionality in two places:

• on or off —
{CHORDIANT_ROOT}/config/Chordiant/component/master/Performance.xml

• settings, if turned on —
{CHORDIANT_ROOT}/config/Chordiant/component/master/loghelper.xml
106 Foundation Server Developer’s Guide, release 5.7

Auditing for Performance
Turning distributedaudit On and Off

To specify whether distributedaudit is turned on, open the performance.xml file and modify the
Value of the ClientCall Tag, ServerCall Tag, or both. These two Tags operate independently,
enabling you to audit calls on just the client side, just the server side, or both sides together. A
Value of True means that distributedaudit functionality is turned on. Code Sample 7-7 shows that
server-side auditing is available, while client-side auditing is not.

Filtering the Output

If distributedaudit is turned on, as described in “Turning distributedaudit On and Off”, you can
control which messages are logged using entries in the loghelper.xml file. Filters are separated
for client-side and server-side auditing.

Note: If distributedaudit is not turned on, you will not receive any output, regardless of
which filters you specify here.

Specifying the criteria for distributedaudit is similar to specifying the criteria for other types of
logging. However, instead of giving a package name, as shown in “Criteria Details” on page 56,
you specify a hard-coded string for either client-side or server-side auditing. The criteria value for
auditing has three parts: {hard-coded string}.{servicename}.{methodname}

• hard-coded string for either client-side or server-side auditing:

— SMARTSTUB_DIST_AUDITING: client side

— EJB_DIST_AUDITING: server side

• service name — specifies the service to audit.

• method name —specifies the method to audit.

These three parts work together to provide targeted auditing. The more you specify, the more
targeted the auditing information you receive. The fewer you specify, the more output you
receive.

• If no service is specified, all services on the specified client or server side are audited.

• If no method is specified, all methods on the specified service are audited.

Once you have specified the criteria, you must set the Value for this Criteria to perf.

<Section>Performance
<Tag>ClientCall

<Value>False</Value>
</Tag>
<Tag>ServerCall

<Value>True</Value>
</Tag>

</Section>

Code 7-7: Performance Section of performance.xml Configuration File
Chapter 7: Configuration Files 107

Auditing for Performance
Code Sample 7-8 shows performance filtering for the client side.

Code Sample 7-9 shows performance filtering for the server side.

Format of distributedaudit Message

The distributedaudit output contains the following parts. The important information begins after
the <PTH_STATISTICS portion.

<Tag>criteria
 <Value>SMARTSTUB_DIST_AUDITING.{servicename}.{methodname}</Value>

</Tag>
<Tag>level

 <Value>perf</Value>
</Tag>

Code 7-8: Section of loghelper.xml for Filtering Client-Side Performance Statistics

<Tag>criteria
 <Value>EJB_DIST_AUDITING.{servicename}.{methodname}</Value>

</Tag>
<Tag>level

 <Value>perf</Value>
</Tag>

Code 7-9: Section of loghelper.xml for Filtering Server-Side Performance Statistics

<PTH_STATISTICS

user

service.function name

data size of request

output data size

<field for internal use only>

EJB_PERF_LOGGING or SMARTSTUB_PERF_LOGGING, showing which side is audited

Startdate

Starttime

Enddate

Endtime

starttime in ms

duration in ms

error (n = no error)
108 Foundation Server Developer’s Guide, release 5.7

Auditing for Performance
Code Sample 7-10 shows a sample distributedaudit message for the client side, the important
information shown in bold.

Code Sample 7-11 shows a sample distributedaudit message for the server side, the important
information shown in bold.

Auditing and Debugging Transactions

There might be times when something with a transaction doesn’t seem to be working as you
would expect. With both Container Managed Transactions (CMTs) and Bean Managed
Transactions (BMTs) available, it can be useful to see if the JX Infrastructure is routing a particular
service call to either the CMT or BMT EJB that you are expecting.

You can see exactly which EJB the call is going through by using a transaction debug
configuration file. This configuration will print a debug message to standardout for every call that
is made to every service.

Code Sample 7-12 shows a sample {component}.xml file, called service_tx_debug.xml.

06_clone1.log:[6/17/04 13:34:01:825 PDT] 629a1cd5 SystemOut O <Thu Jun 17 13:34:01 PDT 2004> <1087504441825>
<PERF> <Thd=Servlet.Engine.Transports : 5> <com.chordiant.session.service.SessionService.removeSession()>
<PTH_STATISTICS,ccagent1,SessionService.removeSession,100,45,1,
SMARTSTUB_PERF_LOGGING,06/17/2004,13:34:01,06/17/2004,13:34:01,763,61,N>

Code 7-10: DIstributedAudit Message for Client Side (SMARTSTUB)

06_clone1.log:[6/17/04 13:34:01:825 PDT] 629a1cd5 SystemOut O <Thu Jun 17 13:34:01 PDT 2004> <1087504441825>
<PERF> <Thd=Servlet.Engine.Transports : 5> <com.chordiant.session.service.SessionService.removeSession()>
<PTH_STATISTICS,ccagent1,SessionService.removeSession,100,45,1,EJB_PERF_LOGGING,06/17/2004,13:34:01,06/17/2004,
13:34:01,773,50,N>

Code 7-11: DIstributedAudit Message for Server Side (EJB)

<Section>Log
<Tag>service_tx_debug.Filter

<Value>service_tx_debug1</Value>
</Tag>
<Tag>service_tx_debug.Filter

<Value>service_tx_debug2</Value>
</Tag>

</Section>
<Section>service_tx_debug1

<Tag>filterclass
<Value>com.chordiant.core.log.LogFilter</Value>

</Tag>
<Tag>writer

<Value>com.chordiant.core.log.LogWriterStandardOut</Value>
</Tag>
<Tag>criteria

<Value>com.chordiant.service.ejb.EJBGatewayServiceBean.processRequestObject</Value>
</Tag>
<Tag>level

<Value>debug</Value>
</Tag>

</Section>

Code 7-12: Sample service_tx_debig.xml File
Chapter 7: Configuration Files 109

Auditing for Performance
Format of Transaction Auditing Message

Code Sample 7-13 shows the output lines for the audit. Output is written to standardout.

For more information on CMTs and BMTs, refer to “Transactions with the JX EJB” on page 20.

<Section>service_tx_debug2
<Tag>filterclass

<Value>com.chordiant.core.log.LogFilter</Value>
</Tag>
<Tag>writer

<Value>com.chordiant.core.log.LogWriterStandardOut</Value>
</Tag>
<Tag>criteria

<Value>com.chordiant.service.ejb.EJBGatewayServiceBean.processRequestXMLString</Value>
</Tag>
<Tag>level

<Value>debug</Value>
</Tag>

</Section>

...<DEBUG>...<Transaction management state is: [BMT] for service [HelloWorldService], method [DOIT]>

...<DEBUG>...<Transaction management state is: [BMT] for service [HelloWorldService],
method [DOIT_CALLBACK]>

Code 7-13: Transaction Auditing Format

Code 7-12: Sample service_tx_debig.xml File (Continued)
110 Foundation Server Developer’s Guide, release 5.7

Chapter 8
Creating Foundation Server
Components
When you create a Chordiant application, you use many components, including services and
client agents, and possibly custom objects. You must also use the Chordiant Resource Manager to
make the system aware of new components that you create. There are special interactions between
these components — callbacks and service to service calls — that you will likely want to use in
your solution.

You can hand-code the services and client agents, as described in this chapter, or you can model
them in Rational Rose and then use Chordiant’s Business Component Generator to create the
services, client agents, constants class, and configuration file. You must still fill in the logic for the
service, but the process is much quicker. Even if you choose to use the Business Component
Generator, the details in this chapter can help you understand how services and client agents
work, as well as how they interact with the Resource Manager.

BUILDING AN APPLICATION

Figure 8-1 illustrates the process of building an application using Chordiant 5 Foundation Server.

Figure 8-1: Using the Chordiant 5 Foundation Server
111

Building a Service
Customization Philosophy

The model for customizing components within the JX architecture is to subclass existing classes
and make your modifications there. Do not alter the functionality in existing classes. For
information on customizing JX services and application components, refer to the Chordiant 5
Foundation Server Application Components Developer’s Guide.

Generating Java Components from Design Tools

You can also create components quickly and easily from within Rational Rose using Chordiant’s
UML Extender for Rational Rose along with Chordiant’s Business Component Generator. Refer to
the Chordiant 5 Foundation Server Application Components Developer’s Guide for details. This process
eliminates the need for most of the hand-coding described in this chapter.

Javadoc

Refer to Javadoc for details on public components.

Javadoc is installed on your computer through the installation under
{WORKSPACE}/documentation/FoundationServer/Javadoc.

Different Javadoc files are available for different areas of the Chordiant 5 Tools Platform and
Foundation Server. Locate the correct project within the Javadoc directory.

Example Code

Example code is provided for services, client agents and a sample application. Example code is
included in the Documentation/Samples/Services directory on the Installation CD. You can
also access this directory through the Chordiant Tools Platform under Help | Help Contents.

BUILDING A SERVICE

This section describes the process of building a service using Chordiant 5 Foundation Server, in
the context of a sample service and application.

All business services should have a corresponding client agent to expose the API on the client
side. For information on building a client agent, refer to “Building a Client Agent” on page 134.
112 Foundation Server Developer’s Guide, release 5.7

Building a Service
Business Service Structure

Before you build a service, it is helpful to have an overview of its structure.

Figure 8-2: Structure of a Business Service

Services consist of these main parts:

• protected service control methods— These include setup, reinitialize, status, and shutdown.
They are called automatically by the infrastructure.

• processRequest method—This public method serves as an entry point into the service. It
calls the private methods.

• private methods—Do the work of the service. They are called by the single entry point,
processRequest.
Chapter 8: Creating Foundation Server Components 113

Building a Service
Creating a Service

Tip: Remember to familiarize yourself with the existing business services before
creating your own service. You might be able to use some functionality from an
existing business service.

You can also create business service skeletons automatically using Rational Rose
and the Business Component Generator. For details, refer to the Chordiant 5
Foundation Server Application Components Developer’s Guide.

To create a service:

1. Create a public class that extends the ServiceBaseClass, as shown in Code Sample 8-1.

Note: The example services created in this chapter extend the ServiceBaseClass. All
Chordiant-provided business services extend the
BusinessDataServiceBaseClass.

The BusinessDataServiceBaseClass has extra features used for proper
business services, like Resource Managers and caching. You can use the extra
features of this base class or use the ServiceBaseClass to create your own
business or system services.

2. Define the CLASS_NAME and the PACKAGE_NAME as constants.

The CLASS_NAME constant is used to hold the value of the service name specified in the XML
configuration files. Client agents use this constant to specify the desired service class name
within the processRequest method. The package name is commonly used for logging
purposes.

The class name constant must match the service name specified in the master.xml or other
configuration file. Client applications use this name when calling the processRequest method
in the client agent.

Code Sample 8-2 shows constants you might add within the service class definition.

public class TestService extends ServiceBaseClass{
. . .

}

Code 8-1: TestService Extends the ServiceBaseClass

public final static String CLASS_NAME = "TestService";
public final static String PACKAGE_NAME = "john.simple.jx.test";

Code 8-2: Sample Constants
114 Foundation Server Developer’s Guide, release 5.7

Building a Service
3. Define the method name constants.

Client applications use these method name constants when calling the processRequest
method in the client agent. The constants are used by processRequest to dispatch the request
to the proper method.

You can choose to define the method name constants in a separate class, or within the service
class definition itself.

Defining constants within a separate class:

Client agents can then use this same class to access the method names for this service. A
separate class for method constants is created for you when using the Business Component
Generator.

To define the method constants, create a new class, named
{yourservice}constants.java. Code Sample 8-3 shows an example of a constants class.

Defining constants within the service class definition:

If you define the method constants within the service class definition, the client agent cannot
access these definitions. You must also define them within the client agent.

Your entry in the service class definition might look similar to Code Sample 8-4.

package john.simple.jx.test.constants;

public class ServiceHistoryConstants {

public final static String FUNCTION_DOHELLOECHO = "DOHELLOECHO";
public final static String FUNCTION_DOCALLBACK = "DOCALLBACK";
public final static String FUNCTION_DOSERVICE2SERVICECALL = "DOSERVICE2SERVICECALL";

}

Code 8-3: New Constants Class

public final static String FUNCTION_DOHELLOECHO = "DOHELLOECHO";
public final static String FUNCTION_DOCALLBACK = "DOCALLBACK";
public final static String FUNCTION_DOSERVICE2SERVICECALL = "DOSERVICE2SERVICECALL";

Code 8-4: Constants in the Service Class Definition
Chapter 8: Creating Foundation Server Components 115

Building a Service
4. Implement the processRequest method.

The public processRequest method serves as the single entry point for the service. A typical
implementation for this method is to dispatch the incoming request to local private methods
defined within the class, based on the function name parameter.

Code Sample 8-5 shows an example segment within the processRequest method.

When coding the dispatch logic, use the method name constants that you defined in Step 3.

public Object processRequest(
String username,
String authentication,
String serviceName,
String functionName,
Object payload)
throws Throwable

{
final String METHOD_NAME = "processRequest";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

Object retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;

if ((functionName != null) && (functionName.length() > 0))
{

try
{

// Do a simple "if statement" dispatcher
if (functionName.compareToIgnoreCase(FUNCTION_DOHELLOECHO) == 0)
{

// Cast the payload as needed.
requestPayload = (PayloadData)(payload);

// Pull any required parameters out of the payload
// as needed for the typed local function.
String theInputData = (String)(requestPayload.

getDataWithName("theParameterName"));

// Call the specific local function
String theOutputData = dohelloecho(theInputData);

// Reuse the input payload for the return payload by clearing it out.
requestPayload.removeAllData();
responsePayload = requestPayload;

// Fill the return payload with the appropriate parameters.
responsePayload.putDataWithName("theParameterName",theOutputData);

// Assign the response payload to the return value of this method.
retval = responsePayload;

}
else if (functionName.compareToIgnoreCase(FUNCTION_DOCALLBACK) == 0)

// additional if statements and dispatching to follow...

Code 8-5: Sample processRequest Method
116 Foundation Server Developer’s Guide, release 5.7

Building a Service
Tip: JX architecture enables method authorization. Users can be granted or denied
permission for specified methods. Refer to “Security” on page 253 for more
information.

5. Optionally, implement the remaining interface for the class.

These four service control methods are called automatically by the infrastructure. You do not
write code to call these methods, but you can control what they do. It is up to you how you
want to use them, if at all.

— setup—initializations, including start caching and getting a Resource Manager. This
is called once when the application starts up.

The BusinessDataServiceBaseClass includes functionality to code caching for static
data.

— reinitialize— to reset the service to its original starting state without shutting it down,
for example refreshing the cache. This method can be called several times.

— status—to assess status while the service is running. This method can be called
several times.

— shutdown—to provide a clean shut down when the service has finished its function.
This is called once just before exit.

For an example implementation of these methods, refer to the example code in the
Documentation/Samples/Services directory on the Installation CD. You can also access
this directory through the Chordiant Tools Platform under Help | Help Contents.

Refer to Chapter 6, “Chordiant 5 Foundation Server Administration” for details on how the
Administrative Console uses these service control methods.

6. Implement the local methods that perform the useful work of the service.

For example, based on the method constants defined in Step 3, you would implement these
local methods:

— docallback

— dohelloecho

— doservice2servicecall

For an example implementation of these methods, refer to the example code in the
Documentation/Samples/Services directory on the Installation CD. You can also access
this directory through the Chordiant Tools Platform under Help | Help Contents.

7. Define the transaction type in the XML configuration file. The transaction can be either bean
managed (Value=EJBBMT) or container managed (Value=EJBCMTRequired). For details,
refer to “Transactions in Chordiant Foundation Server” on page 118.

8. Register the service class name into an XML configuration file for instantiation. Refer to
“Adding Components through Configuration” on page 101 for instructions.
Chapter 8: Creating Foundation Server Components 117

Building a Service
Exceptions

For details on exceptions, refer to “Exceptions and Error Handling” on page 92.

Locking

By default, all Chordiant business services implement optimistic locking at the top of the object
graph. You can choose to change this locking strategy if you want. Services which are not
subclassed from the business service base class do not have a default locking strategy. For more
information on locking strategies, refer to “Optimistic and Pessimistic Locking” on page 197.

Accessing Data Stores

Refer to the “Chordiant Persistence Server” on page 181 for information on how business services
can access persistent data.

Server-Side Business Object Behavior

Business objects are primarily used to carry data between the client and server sides of the
application. Server-side business object behavior (BO behavior or BOB) objects contain behavior
that is specific only to the business object data. In other words, the behavior required for the
business object is located in the BO behavior class. Business objects, together with Business Object
behavior classes and Business Object Criteria classes can be designed using object-oriented tools.
Server-side business object behaviors are used for the Party Management Facility.

For more information on creating server-side business object behavior, refer to the Chordiant 5
Foundation Server Application Components Developer’s Guide.

Transactions in Chordiant Foundation Server

The single JX EJB has two public interfaces: one for Java object-oriented calls and one for
XML-oriented calls.

Figure 8-3: The JX EJB

As described in “Transactions with the JX EJB” on page 20, this single Chordiant JX EJB is
deployed twice: once as a BMT EJB and once as a CMT EJB, with the J2EE Required attribute on
both public interfaces shown above.
118 Foundation Server Developer’s Guide, release 5.7

Building a Service
This enables individual JX services to:

• Configure for BMT and then use the J2EE UserTransaction interface explicitly within Java
code.

Dependent transactions across BMT JX service instances are not supported.

-OR-

• Configure for CMTRequired and then use the J2EE implicit application server transaction
functionality which will either continue an existing transaction across JX service instance calls
or start a new transaction if one is not present.

Dependent transactions across CMT JX service instances are supported.

Note: A BMT JX service that starts a transaction explicitly using UserTransaction can
have that transaction continue (in a dependent manner) if it calls to one or more
CMT JX Services.

Transaction Control Mechanism

Client agents interact with JX services through processRequest method, passing payload data
through to the service.

• Some client agents, like an account management client agent, are strongly typed and interact
with only one type of EJB — either BMT or CMT.

• Other client agents, like the XML client agent, are “typeless” and can interact with both BMT
and CMT EJBs.
Chapter 8: Creating Foundation Server Components 119

Building a Service
By default, all client agents use the EJBStub. (Other stub types are also available. Refer to
“Configuring SmartStubs” on page 124 for more information.) The EJBStub has connections to all
JX EJB deployments. The EJBStub determines which JX EJB deployment to call based on:

• the servicename tag passed in the client agent’s payload data,

and

• the service’s transactional configuration.

Figure 8-4: EJBStub Makes Calls to Appropriate Deployment
120 Foundation Server Developer’s Guide, release 5.7

Building a Service
Therefore, in the Foundation Server {component}.xml configuration files, you must
specify that:

• the client agent use EJBStub (this is the default stubtype)

• the service is either BMT or CMTRequired

Note: All Chordiant-deployed EJBs must use the EJBStub stubtype. You can use other
stubtypes for other services, if you choose. Refer to “Configuring SmartStubs” on
page 124 for more information on additional stub types.

Notice that this is done in the configuration files, so you do not have to make changes to your
individual services.

<Section>clientagents

<Tag>component.name

<Value>MyClientAgent</Value>

</Tag>

</Section>

<Section>MyClientAgent

<Tag>classname

<Value>com.chordiant.service.MyClientAgent</Value>

</Tag>

<Tag>stubtype

<Value>EJBStub</Value>

</Tag>

</Section>

<Section>services

<Tag>component.name

<Value>MyService</Value>

</Tag>

</Section>

<Section>MyService

<Tag>classname

<Value>com.chordiant.service.MyService</Value>

</Tag>

<Tag>ConnectionName

<Value>EJBBMT</Value>

 -- OR --

<Value>EJBCMTRequired</Value>

</Tag>

</Section>
Chapter 8: Creating Foundation Server Components 121

Building a Service
Refer to “Adding Components through Configuration” on page 101 for more information on
configuration files.

Rollbacks

If an exception is allowed to escape from a JX service under the JX CMT EJB, and the Transaction
Rollback Strategy in the service’s configuration is set to ALL (refer to “Configuring for Rollbacks”
below), the JX CMT EJB top-level exception handler will call sessionContext.setRollbackOnly,
which causes the J2EE container to call the rollback method on the active transaction. The original
JX service exception is still thrown and delivered to the caller.

• If a CMT JX service wishes to “announce” an error condition to a calling client without causing
a rollback on the active transaction, it must do so by returning a natural error code in the
returned PayloadData. It should not throw an exception.

• If a CMT JX service wishes to “announce” an error condition that will cause the active
transaction to roll back, it must do so by throwing an exception from its processRequest
method.

Configuring for Rollbacks

You can set the way you want to handle rollbacks in your Container Managed Transaction (CMT)
through configuration. In the services Section of the {component}.xml file, you can use the
Transaction_Rollback_Strategy tag. This tag specifies how the CMT will handle a rollback.

If an exception is thrown in a CMT service and escapes to the top layer JX CMT EJB, there are two
behaviors that can occur:

• ALL—All exceptions will cause a transaction rollback

• J2EE—Only system exceptions will cause a transaction rollback, as per the J2EE EJB
specification.

Notes: ALL is the original default value and is the default if this tag is missing from the
configuration file.

If a tag has a value other than the two valid values, an error message is written
and the behavior defaults to ALL.

Regardless of the setting, the service can still call sessionContext.setRollbackOnly to roll back the
entire transaction, even if there isn’t an exception.
122 Foundation Server Developer’s Guide, release 5.7

Building a Service
Here is an example of the tag in a sample service Section of a {component}.xml configuration
file:

For more information on error handling, refer to “Exceptions and Error Handling” on page 92. For
more information about configuring services, refer to Chapter 7, “Configuration Files”, especially
“Adding Components through Configuration” on page 101.

Tip: When debugging your CMT services, you might want to specify a longer JTA
timeout in your application server. This way, transactions will not be rolled back
automatically before you have completed your testing.

<Section>MyService
<Tag>classname

<Value>com.chordiant.service.MyService</Value>
</Tag>
<Tag>Transaction_Rollback_Strategy

<Value>ALL</Value>
</Tag>
<Tag>ConnectionName

<Value>EJBCMTRequired</Value>
</Tag>

</Section>
Chapter 8: Creating Foundation Server Components 123

Building a Service
Configuring SmartStubs

Smartstubs help the client agent communicate with the JX service. The client agent does not need
to know what kind of service it is contacting— SmartStubs handle the communication
information.

Figure 8-5: Client Agents Using SmartStubs to Contact Services

SmartStubs are configured in both the smartstubs.xml file and in the clientagent and services
Sections of the {component}.xml files.

Chordiant provides four types of SmartStubs:

• EJBStub (default – used by Chordiant-provided business services)

• RemoteEJB

• SOCKETSTUB

• RMIService

EJBStub

The EJBStub is the default smartstub configuration. It is used for normal communications between

• thick clients and services

• servlet JSPs and services

• services and other services
124 Foundation Server Developer’s Guide, release 5.7

Building a Service
These entities must be within the same JNDI space.

Figure 8-6: Using EJBStub Smartstub

RemoteEJB

RemoteEJB is used when the entities mentioned above (in “EJBStub”) are in different JNDI spaces,
perhaps due to two deployments in two different (heterogeneous) application servers.

Figure 8-7: Using RemoteEJB SmartStub
Chapter 8: Creating Foundation Server Components 125

Building a Service
SOCKETSTUB and RMIService

For callbacks, Chordiant 5 Foundation Server uses network presence.

Figure 8-8: Communication for Callbacks

• On thin clients using browsers, the network presence is a socket server and is registered with
JNDI as a socket entity.

• On thick clients, network presence is established using the GatewayHelper, which can be
configured (for thick clients only) to use a socket server or an RMI server, and will register
with JNDI as appropriate. For server-side components which perform callbacks to thick
clients, the callback client agent will automatically be initialized to use the SOCKETSTUB or
RMIService as appropriate.

Another reason you might use SOCKETSTUB is that you might not be able to use the application
server’s ORB. This can be caused by dissimilar versions of JDK. Here are two examples.

• If you are developing a thick client with JDK “A” and want to test with an application server
with JDK “B”, you might not be able to use EJBStub. Since socket communication is a common
denominator between all JDK versions (and the fact that Chordiant provides this facility), you
can communicate with the application server through sockets and SOCKETSTUB. One
example where this can be useful is if you are developing a thick client in an IDE that cannot
126 Foundation Server Developer’s Guide, release 5.7

Building a Service
support native communications with the application server (perhaps a JDK version
mismatch), yet you still want to be able to run and debug your client from within the thick
client IDE.

Figure 8-9: Using Sockets During Development

• Another example of where you might use the SocketSmartStub is if you have a legacy Java
application on an old JDK version that must communicate with a newer application running a
newer version of JDK.

Creating Your Own Smartstub Type

By default, all client agents use EJBStub. But if your system requires communication through
sockets, you can specify that client agents use the SOCKETSTUB option. You can also create your
own smartstub type.

To create your own smartstub type:

1. Develop your own communication service Java class to implement the new protocol (for
example, com.xxx.service.IIOPServiceSmartStub) and implement the SmartStubInterface
interface from Chordiant.

2. Create a new {service}SmartStub.xml file in the
{CHORDIANT_ROOT}/config/chordiant/components directory, based on the
SmartStubs.xml in {CHORDIANT_ROOT}/config/chordiant/components/master
directory.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.
Chapter 8: Creating Foundation Server Components 127

Building a Service
3. Within your new {service}SmartStub.xml file, create a smartstubs Section and a
smartstubs.type Tag for your new smart type (for example, IIOPStub) in the enumeration
Section of the file. Be sure to name it after your service, shown here as {myservice}.

4. Create a new stub Section and a classname Tag for your new smart type (for example,
IIOPStub) for the attributes Section of the {service}SmartStub.xml file.

5. Create a new {component}.xml configuration file in the
{CHORDIANT_ROOT}/config/chordiant/components directory, based on the
{service}.xml configuration file for the service the client agent will communicate with.
(This file is located in the {CHORDIANT_ROOT}/config/chordiant/components/master
directory.)

6. Create a {component}ClientAgent Section and a stubtype Tag.

Note: Remember to follow the general rules for working with all configuration files,
including not changing any of the master.xml or components/master
files. Refer to “Configuration Files” on page 95 for details on working with
configuration files.

Code Sample 8-6 is an example of the EJBStub definition in the smartstubs.xml file.

<Section>smartstubs
<Tag>{myservice}.type

<Value>IIOPStub</Value>
</Tag>

</Section>

<Section>IIOPStub
<Tag>classname

<Value>com.xxx.service.IIOPSmartStub</Value>
</Tag>

</Section>

<Section>myClientAgent
…

<Tag>stubtype
<Value>IIOPStub</Value>

</Tag>
</Section>

<Section>smartstubs
<Tag>smartstubs.type

<Value>EJBStub</Value>
</Tag>
...

</Section>
<Section>EJBStub

<Tag>classname
<Value>com.chordiant.service.clientagent.EJBSmartStub</Value>

</Tag>
<Tag>Definition

<Value>EJBStubBMT</Value><! You can have multiple definitions

Code 8-6: Defining EJBStub in the smartstubs.xml File
128 Foundation Server Developer’s Guide, release 5.7

Building a Service
Creating Another EJB Deployment

As described in “CMT “trans-attribute” Options” on page 25, Chordiant provides the
CMTRequired trans-attribute. If you want to use a different EJB deployment, you can define it
yourself.

Note: Chordiant-provided JX services are set up to use either BMT or CMTRequired. Do
not change the transaction model or transaction attribute for any existing JX
services.

To use a custom EJB deployment:

1. Develop your Java class to implement the new transaction attribute, for example, CMT
Mandatory.

2. Create a new {service}SmartStub.xml file in the
{CHORDIANT_ROOT}/config/chordiant/components directory, based on the
SmartStubs.xml in {CHORDIANT_ROOT}/config/chordiant/components/master
directory.

</Tag>
<Tag>Definition

 <Value>EJBStubCMTRequired</Value> <! You can have multiple definitions
</Tag>

</Section>
<Section>EJBStubBMT

 <Tag>ConnectionName
 <Value>EJBBMT</Value>

 </Tag>
 <Tag>JNDIName <! The JNDI name is configurable. Note the BMT ending

 <Value>com_chordiant_service_ejb_EJBGatewayServiceBMT</Value>
 </Tag>

</Section>
<Section>EJBStubCMTRequired

<Tag>ConnectionName
<Value>EJBCMTRequired</Value>

</Tag>
<Tag>JNDIName <! The JNDI name is configurable. Note the CMTRequired

<Value>com_chordiant_service_ejb_EJBGatewayServiceCMTRequired</Value>
</Tag>
<Tag>NameServiceHostURL <! Optional external JNDI configuration

<Value>xxx://yyy:zzz</Value> <! for each connection
</Tag>
<Tag>InitialContextFactory

<Value>some.vendor.specific.initial.context.factory</Value>
</Tag>

</Section>

Code 8-6: Defining EJBStub in the smartstubs.xml File (Continued)
Chapter 8: Creating Foundation Server Components 129

Building a Service
3. Create an EJBStub Section and a Definition Tag named for your service for the new transaction
attribute. In this example, EJBStubCMTMandatory. Note that EJBStubCMTMandatory is the
Section name in Step 4.

4. Create a new Section for the new transaction attribute with ConnectionName and JNDIName
Tags.

The ConnectionName used here needs to match the ConnectionName used in the service
configuration file.

5. Create a new {component}.xml configuration file in the
{CHORDIANT_ROOT}/config/chordiant/components directory, based on the
{service}.xml configuration file for the service. (This file is located in the
{CHORDIANT_ROOT}/config/chordiant/components/master directory.)

6. Within the service Section of the new {component}.xml file, update the ConnectionName
Tag to match the ConnectionName in {component}SmartStub.xml file.

<Section>EJBStub
<Tag>[myservice]Definition

<Value>EJBStubCMTMandatory</Value>
</Tag>

</Section>

<Section>EJBStubCMTMandatory
<Tag>ConnectionName

<Value>EJBCMTMandatory</Value>
</Tag>
<Tag>JNDIName

<Value>com_xxx_service_ejb_EJBGatewayServiceCMTMandatory</Value>
</Tag>

</Section>

<Section>xxxService
…
<Tag>ConnectionName

<Value>EJBCMTMandatory
</Tag>
…

130 Foundation Server Developer’s Guide, release 5.7

Integrating with Chordiant Services
INTEGRATING WITH CHORDIANT SERVICES

Now that you have created your channel-independent enterprise business logic, you can choose
from many different styles of integration. Figure 8-10 illustrates four styles of integration.

Figure 8-10: Styles of Integrating with Chordiant Services

The four styles of integration illustrated in Figure 8-10 include:

1. Java thick clients can use a Java client agent to contact the JX EJB and its services.
For more information on client agents, refer to “Building a Client Agent” on page 134.

2. Any client that can use SOAP over HTTP can use the web services infrastructure to access the
JX EJB and its services. For more information on web services, refer to “Using Web Services”
on page 133 and the “Web Services” chapters in the Chordiant 5 Foundation Server Application
Components Developer’s Guide.

3. Any client that can interface with JMS or MQ can access JX services asynchronously through
the Chordiant Event Server. For more information on interacting with JX services through
asynchronous messaging, refer to “Chordiant Event Server” on page 239.
Chapter 8: Creating Foundation Server Components 131

Integrating with Chordiant Services
4. Thin clients using HTTP can access servlets which, in turn, contact Chordiant client agents,
which are proxies to the JX services. For more information on how thin clients can interact
with JX services, refer to “Request Server” on page 283.

All of these styles are valid. You can choose one of these styles based on many factors, including:

• type of client

• deployment

• performance

For example, if you have a Java client, using Java client agents is your best choice, since they are so
performant. If you have a C# client, your choices are more limited and your best choice might be
to use the web services interface. Consider your needs when determining which style of
interaction is best for your enterprise solution.
132 Foundation Server Developer’s Guide, release 5.7

Using Web Services
USING WEB SERVICES

Chordiant offers web services functionality for your enterprise. Through web services, you can
share Chordiant functionality with remote or non-Chordiant applications within your
enterprise — regardless of the platform. You can also take advantage of non-Chordiant
functionality within your Chordiant deployment.

• You can implement any Chordiant JX service as a web service, so it can be securely accessed
by other systems over HTTP or other protocols.

• You can use Chordiant JX services to make calls to external web services, outside the
Chordiant system.

Many of the Chordiant-provided services are also available as web services, complete with WSDL
(Web Service Description Language) files and WSDD (Web Services Deployment Descriptor) files.
These web services are ready for you to deploy and share with other users. A list of available web
services files is published in the Chordiant 5 Foundation Server Application Components Developer’s
Guide.

If you model your own service or customize a Chordiant service model, after you create your
service components, you can choose to generate WSDLs and WSDDs. For details on generating
and using WSDLs, WSDDs, and task descriptors, refer to the Chordiant 5 Foundation Server
Application Components Developer’s Guide.

Web Services Security

Chordiant web services are secure because, as you’ve already read on page 138, the authentication
token is embedded in each request to every Chordiant service, rather than just being part of the
request container. Each Chordiant service call requires username and authenticationToken
parameters. Without these parameters, you cannot access the service. So before you can call any
Chordiant web service, you must first call the Chordiant Security Manager web service,
specifically the authenticate method, to receive an authentication token. Once that token is
acquired, use that token in your subsequent calls to any Chordiant web service. For more
information on security, refer to Chapter 11, “Security”.

If you are using Secure Sockets Layer (SSL) for web security, web services will still be fully
accessible and functional.
Chapter 8: Creating Foundation Server Components 133

Building a Client Agent
BUILDING A CLIENT AGENT

This section describes the process of building a client agent using Chordiant 5 Foundation Server,
in the context of a sample service, client agent, and application. The methods that you implement
in the client agent correspond to the methods you define in the business service. For more
information on building business services, refer to “Building a Service” on page 112.

Tip: It is possible to have one aggregate client agent that calls multiple business
services. There does not have to be a one to one correlation between client agents
and different business services.

Note: All logic, including caching, is implemented in the business services and
server-side business object behaviors, not within the client agents, since it is
possible for services and business object classes to be accessed without a client
agent. Do not put business logic or state information in client agents when
creating client agents.

Client Agent Structure

Before you build a client agent, it is helpful to have an overview of its structure.

Figure 8-11: Structure of a Client Agent
134 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
Client agents consist of these main parts:

• processRequest method — Used to dispatch requests to the appropriate service and method
on the server. With a typed interface, processRequest may be included in one or more public
methods, as shown above.

• processCallback method — When a client agent is called from the service, processCallback
is used to call methods to be implemented remotely on the client side.

Creating a Client Agent

To create a client agent:

1. Create a public class that extends the ClientAgentBaseClass, as shown in Code Sample 8-7.

Notes: The example client agents created in this chapter extend the
ClientAgentBaseClass. All Chordiant-provided business services extend the
BusinessDataClientAgentBaseClass.

The BusinessDataClientAgentBaseClass has extra features used for proper
business client agents. You can use the extra features of this base class or use the
ClientAgentBaseClass to create your own business or system services.

As shown in Figure 8-12, the base class is fully functional and, as provided, is capable of
calling any business service. You can simply instantiate it for typeless interfaces. However,
you will likely want to subclass the base class to use a typed interface and make your client
agent more targeted.

Figure 8-12: ClientAgentBaseClass

public class TestClientAgent extends ClientAgentBaseClass {
. . .

}

Code 8-7: TestClientAgent Extends the ClientAgentBaseClass

ClientAgentBaseClass
Chapter 8: Creating Foundation Server Components 135

Building a Client Agent
2. Define the CLASS_NAME and the PACKAGE_NAME as constants.

The CLASS_NAME constant is used to hold the value of the client agent name specified in the
XML configuration file. Applications use this constant to specify the desired client agent class
name when calling the getClientAgent method in the ClientAgentHelper. The package name is
commonly used for logging purposes.

Code Sample 8-8 shows sample constants you might add within the client agent class
definition.

3. Define the method name constants.

Applications use these method name constants when calling the processRequest method in
the client agent. The processRequest method then uses these method names to route the
request to the appropriate service and method.

If you already defined the method name constants in a separate class when creating the
service (refer to Step 3 on page 115), you can use that same class here. If necessary, you can add
method name constants to this same class.

Alternatively, you might add this line within the client agent definition.

public final static String CLASS_NAME = "TestClientAgent";
public final static String PACKAGE_NAME = "john.simple.jx.test";

Code 8-8: Sample Constants for the Client Agent Class Definition

public final static String FUNCTION_DOWORK = "dowork";
136 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
4. Implement the methods of the interface to the service.

The purpose of each of these methods is to provide a typed interface to the client application.
The method itself simply passes the request through to the typeless interface of the service.

In the case of the service defined in “Building a Service” on page 112, you would implement
methods for these functions within the service interface:

— docallback

— dohelloecho

— doservice2servicecall

Here is the implementation of dohelloecho. For the other methods mentioned here, refer to the
example code in the Documentation/Samples/Services directory on the Installation CD.
You can also access this directory through the Chordiant Tools Platform under Help | Help
Contents.

Note: Refer to “Passing Payload with PayloadData” on page 140 for information on
payload.

public String dohelloecho(String userName, String authenticationToken, String inputData)
{

final String METHOD_NAME = "dohelloecho";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;
Object tmpResponsePayload = null;

try
{

// Set the payload.
requestPayload = new PayloadData();
requestPayload.putDataWithName("theParameterName",inputData);

// Call the remote JX service
tmpResponsePayload =

processRequest(
userName,
authenticationToken,
TestService.CLASS_NAME,
TestService.FUNCTION_DOHELLOECHO,
requestPayload);

// Cast the returned payload.
responsePayload = (PayloadData)

(tmpResponsePayload);

// Pull out any needed return values from the payload as appropriate for the
// return value of this method.
retval = (String)(responsePayload.getDataWithName("theParameterName"));

}

Code 8-9: Implementing the Service Methods
Chapter 8: Creating Foundation Server Components 137

Building a Client Agent
5. Implement the dowork method, including using the processRequest method.

The processRequest method serves as the single entry point for the service. Use the
processRequest method within your client agent methods (such as dowork, getCustomer, or
any method) to call the corresponding service.

The processRequest method takes these five arguments:

— username: The name of the user.

— authenticationToken: From the Security service.

— serviceName: The name of the service class. Should be the same as that specified
within the XML configuration files.

— functionName: The function within the specified service.

— requestPayload: For requestPayload, you can use the PayloadData container class.
Refer to “Passing Payload with PayloadData” on page 140 for details.

There are additional forms for processRequest. Refer to “Additional Forms of
processRequest” on page 139.

Code Sample 8-10 shows an example segment within the dowork method, which uses
processRequest.

catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred",
e);

}

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

public String dowork(String userName, String authentication, String inputData)
{

final String METHOD_NAME = "dowork";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;
Object tmpResponsePayload = null;

try
{

// Set the payload.
requestPayload = new PayloadData();
requestPayload.putDataWithName("theParameterName",inputData);

// Call the remote clientagent.
tmpResponsePayload = processRequest(

userName,

Code 8-10: doWork Method including processRequest

Code 8-9: Implementing the Service Methods (Continued)
138 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
6. Optionally, specify any shutdown tasks you might want to add to the client agent’s
functionality. Make modifications to the shutdown method.

7. If you are using a callback, implement the processCallback method to enable the client agent
to receive a callback from a service. The public processCallback method dispatches requests to
private functions within the client agent. (See Figure 8-11 on page 134.)

The private methods are meant to be implemented on the client side when called from the
server side.

This step is only needed if the client agent will be receiving callbacks.

8. Register the client agent class name into an XML configuration file for instantiation. Refer to
“Adding Components through Configuration” on page 101 for instructions.

Additional Forms of processRequest

The ClientAgentBaseClass includes additional signatures for processRequest. The content is the
same as in the original processRequest format (see Step 5 on page 138), however the form is more
streamlined. We encourage you to use these more streamlined signatures in any new
customizations.

Object processRequestObject (Object inputData)
or
String processRequestXMLString(String inputdata)

authentication,
TestClientAgent.CLASS_NAME,
TestClientAgent.FUNCTION_DOWORK,
requestPayload);

// Cast the returned payload.
responsePayload = (PayloadData)

(tmpResponsePayload);

// Pull out any needed return values from
// the payload as appropriate for the return
// value of this method.
retval = (String)(responsePayload.

getDataWithName("theParameterName"));
}
catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred",
e);

}

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

Code 8-10: doWork Method including processRequest (Continued)
Chapter 8: Creating Foundation Server Components 139

Building a Client Agent
The Object or String must include the PayloadData along with the required username,
authenticationToken, serviceName, and functionName parameters or tags. Public static constant
definitions for the required parameter names (or XML tags) can be found in
com.chordiant.service.constants.ServiceConstants, they are:

• PAYLOAD_DATA_USERNAME_TAG

• PAYLOAD_DATA_AUTHEN_TAG

• PAYLOAD_DATA_SERVICENAME_TAG

• PAYLOAD_DATA_FUNCTIONNAME_TAG

Note: Check that the tags you are using will not clash with these tag values.

For the XML version of processRequest, the XML that you use for the String input and output in
this interface is the same format as that described in “XML Client Agent Interface” on page 143.

Passing Payload with PayloadData

The payload is how data is passed between a client agent and a business service. Use PayloadData
to pass data instead of creating your own classes or vectors. PayloadData is in the package
com.chordiant.service.

The class PayloadData is an intermediary container for data requests between client agents and
business services. The PayloadData container must be the top-level object passed for all
implemented processRequest methods.

Note: processRequest requires that payload data be at the top of the object graph or,
for XML, payload data must be at the root level.

Here are the key methods of PayloadData:

• public object getDataWithName (String key)—gets the data using the associated String

• public void putDataWithName (String key, Object value)—sets the data property value for
the named parameter

Note: In general, keys should be unique for any set of data. However, it is possible to
use a key more than once. For example, if you use putDataWithName twice
using the same key, like “LastName”, the last object you enter is the one that will
be used.
140 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
Supported Data Types

These data types are supported for communication between client agents and services.

All data types listed above, except electric.util.Hex, are serializable.

All data containers including these data types, for example business objects, should implement
serializable and clonable.

These are communication data types, not persistence data type mappings. For information on
persistence data type mapping, see “Mapping Java Data Types to Database Types” on page 225.

• Java primitive types
• Java simple types
• Java arrays
• java.util.Vector
• java.util.Hashtable

• java.util.HashMap
• java.util.HashSet
• java.util.LinkedList
• java.util.ArrayList
• java.util.TreeMap
• org.jdom.Document
• org.jdom.element
• org.w3c.dom.Document

JAVA TYPE XSD TYPE JAVA TYPE XSD TYPE

boolean boolean float float

byte byte double double

char unsignedShort java.lang.String String

short short java.util.Date dateTime

int int electric.util.Hex hexBinary

long long java.math.BigDecimal decimal

Table 8-1: Supported Java and XSD Types
Chapter 8: Creating Foundation Server Components 141

Building a Client Agent
Additional Types of Client Agents

The Chordiant 5 Foundation Server client agents described so far, are Java-based and
object-oriented. If your application is also Java-based and object-oriented, then these “standard”
Chordiant 5 client agents are probably the best choice to use with your application.

The JX architecture is flexible, enabling you to use alternative client agent styles for different types
of applications. For example, if you are using an XML-based application, you will probably want
to use the XML client agent instead of the standard JX client agents used for Java-based,
object-oriented applications. For other types of applications, you can use Chordiant’s web
services, as described in “Using Web Services” on page 133.

Note: The JX SOAP servlet is deprecated in this release and will be removed from the
product in future releases. If your application uses SOAP over HTTP, use web
services instead. For more information, refer to “Using Web Services” on
page 133.

The client agent you choose depends on the “client” application architecture you are using.
Regardless of client agent you use, the JX infrastructure will provide a seamless interface to the
appropriate JX service to get the necessary work done.

You can even choose not to use client agents at all, but to rely on direct J2EE to access JX services
through the JX EJB. Refer to “Accessing Services without Client Agents” on page 149 for details.

Requirements for Interaction with JX Services through XML

There are several formatting requirements for the requests and responses for interacting with a JX
service through XML messages.

1. The XML formatting rules for all request and response XML data conform to the W3C XML
Schema and the W3C SOAP Encoding Style specifications.

The related specifications are:

http://www.w3.org/TR

— XML Schema Part 0: Primer

— XML Schema Part 1: Structures

— XML Schema Part 2: Datatypes

— SOAP Version 1.2 Part 0: Primer

— SOAP Version 1.2 Part 1: Messaging Framework

— SOAP Version 1.2 Part 2: Adjuncts

2. The top level http://www.w3.org/TR for all requests and responses is of type
http://www.w3.org/TR.

3. The http://www.w3.org/TR type is a top level container http://www.w3.org/TR which can
contain one or more http://www.w3.org/TR nodes.
142 Foundation Server Developer’s Guide, release 5.7

http://www.w3.org/TR
http://www.w3.org/TR
http://www.w3.org/TR
http://www.w3.org/TR
http://www.w3.org/TR
http://www.w3.org/TR

Building a Client Agent
4. The ParameterPair type is a container node which contains name and value nodes for a single
parameter.

5. All JX service requests are required to contain the following ParameterPairs:

— userName

— authenticationToken

— serviceName

— functionName

— zero or more arbitrary parameters, based on the specific service or function that is
called.

6. All JX service responses are required to contain the following ParameterPairs:

— zero or more arbitrary parameters, based on the specific service or function that was
called.

XML Client Agent

If you are working with an XML-oriented architecture, you can choose to use the XML Client
Agent, included with Chordiant 5 Foundation Server. If you use this client agent, you can
interface with any JX service without using Java objects at all. (See note below.) Services behave
the same way regardless of whether they are accessed by the XML Client Agent or by an
object-oriented client agent (described in the rest of this Client Agent section).

Note: The XML Client Agent works with all provided Foundation Server application
components (JX services). If you want to build a custom JX service which
participates with the XML Client Agent, the service must receive and return
PayloadData. (See “Passing Payload with PayloadData” on page 140.)

XML Client Agent Interface

The XML Client Agent is basically another implementation of the processRequest method. Rather
than taking the standard five parameters for processRequest (user name, authentication token,
service name, method name, and payload), this client agent takes an XML document, which then
must contain all five pieces of information just listed for processRequest.

The XML Client Agent is in the package com.chordiant.service.clientagent.xml.XMLClientAgent.

There are three interfaces for the XML Client Agent:

• org.w3c.dom.Document processRequest(org.w3c.dom.Document)

• org.jdom.Document processRequest(org.jdom.Document)

• String processRequest(String)
Chapter 8: Creating Foundation Server Components 143

Building a Client Agent
To implement the XML Client Agent, you must use the SOAP-compliant form for both request
and response, as shown in Code Sample 8-11 and Code Sample 8-12 on page 145. These examples
are for a specific use—the getparty method of the party service. In your implementations, you will
use the same form, but will specify different methods, services, and parameter data.

Example Input XML

<?xml version='1.0' encoding='UTF-8'?>
<root xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'>
 <payload id='id0' xmlns:ns1=

'http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:PayloadData'>
<fieldData id='id1' xmlns:ns1='http://www.themindelectric.com/collections/'

xsi:type='ns1:vector'>
 <item id='id2'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>userName</fieldName>
<fieldData xsi:type='xsd:string'>hmonroe</fieldData>

 </item>
 <item id='id3'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'

xsi:type='ns1:ParameterPair'>
<fieldName xsi:type='xsd:string'>authenticationToken</fieldName>
<fieldData xsi:type='xsd:string'>***</fieldData>

 </item>
 <item id='id4'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>serviceName</fieldName>
<fieldData xsi:type='xsd:string'>PartyService</fieldData>

 </item>
 <item id='id5'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>functionName</fieldName>
<fieldData xsi:type='xsd:string'>getparty</fieldData>

 </item>
 <item id='id6'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>aParty</fieldName>
<fieldData id='id7'
xmlns:ns1='http://www.themindelectric.com/package/
com.chordiant.businessServices.partyBusinessClasses/'

xsi:type='ns1:Party'>
 <PartyNumber xsi:type='xsd:string'>536477</PartyNumber>
</fieldData>

 </item>
</fieldData>

 </payload>
</root>

Code 8-11: Example Input XML for XML Client Agent
144 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
Example Output XML

Using the XML Client Agent

If you want to call two different services, call the XML Client Agent twice, each time with a
different XML document which provides the parameters needed to communicate with the desired
service and method. The XML Client Agent is another implementation of processRequest which
just takes different parameters.

Calling the XML Client Agent is similar to calling any other client agent, as shown in Code
Sample 8-13.

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <payload id="id0" xmlns:ns1="http://www.themindelectric.com/

package/com.chordiant.service/" xsi:type="ns1:PayloadData">
<fieldData id="id1" xmlns:ns1="http://www.themindelectric.com/collections/"
xsi:type="ns1:vector">
 <item id="id2"
xmlns:ns1="http://www.themindelectric.com/package/com.chordiant.service/"
xsi:type="ns1:ParameterPair">

<fieldName xsi:type="xsd:string">aParty</fieldName>
<fieldData id="id3"
xmlns:ns1="http://www.themindelectric.com/package
/com.chordiant.businessServices.partyBusinessClasses/"
xsi:type="ns1:Party">
 <PartyRoleTypeCode
xsi:type="xsd:string">CUSTOMER</PartyRoleTypeCode>
 <PartyTypeCode xsi:type="xsd:string">PERSON</PartyTypeCode>
 <GovernmentIdNumber
xsi:type="xsd:string">432-45-9834</GovernmentIdNumber>
 <RelatedPartyId
xsi:type="xsd:string">0000000001</RelatedPartyId>
 <CreateDate id="id4"
xsi:type="xsd:dateTime">1995-12-06T08:00:00Z</CreateDate>
 <PartyNumber xsi:type="xsd:string">536477</PartyNumber>
 <ChallengeData xsi:type="xsd:string">Fleming</ChallengeData>
 <PassCode xsi:type="xsd:string">840391</PassCode>
 <Id xsi:type="xsd:string">-2147482299</Id>
</fieldData>

 </item>
</fieldData>

 </payload>
</root>

Code 8-12: Example Output XML for the XML Client Agent

...
//Import the XML Client Agent

import com.chordiant.service.clientagent.xml.XMLClientAgent;
...

private static String userName = "hmonroe";
private static String userPassword = "***";
private static String authenticationToken = null;
XMLClientAgent xmlClientAgent = null;
org.w3c.dom.Document theInputXMLDocument = null;

Code 8-13: Calling the XML Client Agent
Chapter 8: Creating Foundation Server Components 145

Building a Client Agent
Additional examples of XML request and response instances that can be used with the XML client
agent are available in the online Documentation/Samples/JX_XML directory on the Installation
CD. You can also access this directory through the Chordiant Tools Platform under Help | Help
Contents.

Accessing Services through Messaging

The XML Client Agent is also used to access JX services through Java Messaging Service (JMS). For
information on this topic, refer to Chapter 10, “Chordiant Event Server”, beginning on page 239.

Generic SOAP Servlet

Note: This servlet is deprecated in this release. It will be removed from future releases.
We suggest you use web services and SOAP instead of using this servlet. For
detailed information on Web Services, refer to the Chordiant 5 Foundation Server
Application Components Developer’s Guide.

You can use SOAP encoding over HTTP to access JX services. Any application that can
communicate with SOAP can interact with the generic JX SOAP servlet included in the JX
infrastructure. The generic JX SOAP servlet then communicates with the target JX service through
an XML Client Agent on the caller’s behalf.

org.w3c.dom.Document theOutputXMLDocument = null;

FatClientStaticHelper.serviceControl(
StaticHelperBaseClass.SERVICE_CONTROL_COMMAND_SETUP);

authenticationToken = SecurityManager.authenticate(
userName, userPassword);

// Get the XMLClientAgent
xmlClientAgent =

(XMLClientAgent) ClientAgentHelper.getClientAgent(
XMLClientAgent.CLASS_NAME);

// Fill theInputXMLDocument with appropriate XML.

// Call the XMLClientAgent and receive an XML Document response.
theOutputXMLDocument = xmlClientAgent.processRequest(

theInputXMLDocument);

if (theOutputXMLDocument != null)
{

// XMLClientAgent call successful, return XML data
// in theOutputXMLDocument.

}
else
{

System.out.println("**** FAILURE on xml client agent request");
}

Code 8-13: Calling the XML Client Agent (Continued)
146 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
The SOAP servlet1 is installed with Chordiant Foundation Server as a web application and is
automatically initialized. The name of the servlet is com.chordiant.application.SOAPServlet.

To use the generic SOAP servlet that is part of the Chordiant Foundation Server, the HTTP client
makes an HTTP post request, with an embedded valid SOAP request, to this URL:

http://localhost/soap/SOAPServlet

For testing purposes, you can type or paste a valid SOAP request into this test page URL:

http://localhost/soap/presentations/html/SOAPForm.htm

Note: Replace localhost with your URL host information.

In the example on page 148, notice that the main information of the request is enclosed in the
standard <SOAP-ENV:Body> tags. This information is the same as the XML Client Agent request
example above. The generic JX SOAP servlet simply strips away the SOAP wrapping and
essentially delivers the remaining XML through an XML Client Agent to the target service.

The examples starting on page 149 show the SOAP wrappers, without specific code.

1. The SOAP servlet is deprecated in this release. It will be removed from future releases. We suggest you use web
services and SOAP instead of using this servlet.
Chapter 8: Creating Foundation Server Components 147

Building a Client Agent
Example SOAP Request to a JX Service1

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<root xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'>

 <payload id='id0'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:PayloadData'>

<fieldData id='id1' xmlns:ns1='http://www.themindelectric.com/collections/'
xsi:type='ns1:vector'>

 <item id='id2'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>userName</fieldName>
<fieldData xsi:type='xsd:string'>john</fieldData>

 </item>
 <item id='id3'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>authenticationToken</fieldName>
<fieldData xsi:type='xsd:string'>ccs</fieldData>

 </item>
 <item id='id4'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>serviceName</fieldName>
<fieldData xsi:type='xsd:string'>PartyService</fieldData>

 </item>
 <item id='id5'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>functionName</fieldName>
<fieldData xsi:type='xsd:string'>getParty</fieldData>

 </item>
 <item id='id6'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant. service/'
xsi:type='ns1:ParameterPair'>

<fieldName xsi:type='xsd:string'>aParty</fieldName>
<fieldData id='id7'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.
businessServices.partyBusinessClasses/' xsi:type='ns1:Party'>

 <PartyNumber xsi:type='xsd:string'>536477</PartyNumber>
</fieldData>

 </item>
</fieldData>

 </payload>
</root>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The SOAP servlet is deprecated in this release. It will be removed from future releases. We suggest you use web
services and SOAP instead of using this servlet.
148 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
SOAP Request Template1

SOAP Response Template

SOAP Response Fault Template

Accessing Services without Client Agents

You are not required to use a standard client agent to communicate with a Chordiant service. This
section describes the various alternative methods of communication.

Using J2EE to Call the Foundation Server EJB

You can also communicate with any JX service through the Foundation Server EJB without using a
client agent. Although client agents provide many benefits, depending on your system, you might
not want or be able to use them. You can use J2EE, separate from the JX architecture, to reach JX
services through the Foundation Server EJB.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

*** Chordiant "payload" request subtree goes here ***
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

1. The SOAP servlet is deprecated in this release. It will be removed from future releases. We suggest you use web
services and SOAP instead of using this servlet.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>

*** Chordiant "payload" response subtree goes here ***
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Server Error</faultstring>
*** Chordiant "payload" response subtree goes here ***

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
Chapter 8: Creating Foundation Server Components 149

Building a Client Agent
Code Sample 8-14 is a sample of this J2EE call to the Foundation Server EJB.

To access any JX service without a client agent, you can use either of the following JX EJB single
APIs:

String processRequestXMLString(String inputdata)
or
Object processRequestObject (Object inputData)

The Object or String must include the PayloadData along with the required username,
authenticationToken, serviceName, and functionName parameters or tags. Public static constant
definitions for the required parameter names (or XML tags) can be found in
com.chordiant.service.constants.ServiceConstants:

• PAYLOAD_DATA_USERNAME_TAG

• PAYLOAD_DATA_AUTHEN_TAG

• PAYLOAD_DATA_SERVICENAME_TAG

• PAYLOAD_DATA_FUNCTIONNAME_TAG

String ejbJNDIName = "EJBGatewayServiceHome";
com.chordiant.service.ejb.EJBGatewayServiceHome homeInterface = null;
com.chordiant.service.ejb.EJBGatewayService theBean = null;
String someXMLString = null;

// Get the J2EE initial context.
javax.naming.InitialContext initialContext =

new javax.naming.InitialContext();

// Get the J2EE lookup object for the JX EJB.
java.lang.Object lookupObject = initialContext.lookup(

ejbJNDIName);

// Do a J2EE narrow on the J2EE lookup object.
homeInterface =

(com.chordiant.service.ejb.EJBGatewayServiceHome)
javax.rmi.PortableRemoteObject.narrow(

lookupObject,
com.chordiant.service.ejb.EJBGatewayServiceHome.class);

// Do a J2EE create on the J2EE home interface to get an actual
// reference to the JX EJB.
theBean = homeInterface.create();

// Call the JX EJB directly.
String retval = theBean.processRequestXMLString(

someXMLString);

Code 8-14: J2EE Call to the Foundation Server EJB
150 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
For the XML version of processRequest, the XML that you use for the String input and output in
this interface is the same format as that described in “XML Client Agent Interface” on page 143.

Note: processRequest requires that payload data be at the top of the object graph or,
for XML, payload data must be at the root level.

Using the Foundation Server SocketGatewayService

Note: Only use the SocketGatewayService if your application cannot participate in
IIOP or in the JX Architecture.

The Foundation Server SocketGatewayService is a custom object that allows access to all JX
services through simple socket communications, with a user name and encrypted authentication
token. (For information on Custom Objects, refer to “CustomObjects and the
CustomObjectHelper” on page 176.) It is a general purpose socket server that enables non-Java
applications, or those that cannot use IIOP, to interact with JX services.

In addition to interfacing with the JX services, SocketGatewayService provides a simple socket
interface to:

• the application server’s JNDI component, including lookup, bind, rebind, and unbind functions

• the ConfigurationHelper’s getConfiguration functionality

• the ServiceControl functionality through the Administrative Console (setup, refresh, status,
shutdown)
Chapter 8: Creating Foundation Server Components 151

Building a Client Agent
The SocketGatewayService runs as a singleton custom object in each JVM replicate of the
application server. Note that these are the JVM replicates that run the JX EJBs and have
connectivity to data stores and backend systems.

Figure 8-13: Interaction of Socket Client with Chordiant Foundation Server
through the SocketGatewayService

Control of the listen IP address and port number for the SocketGatewayService is through the
following Java system properties, which must be set on the application server JVM.

The following server-side settings are standard Java system properties that can be set through the
Java command line using "-D" parameters.

SocketGatewayService Listen Port Number

Property Name: chordiant.service.socketGatewayServicePort

Command Line Property: -Dchordiant.service.socketGatewayServicePort=ppp

Default Value: There is no default value for this property.

SocketGatewayService Listen IP Address

Property Name: chordiant.service.socketGatewayServiceIPAddress

Command Line Property: -Dchordiant.service.socketGatewayServiceIPAddress=iii

Default Value: If this property is not set, then a default value of localhost is used.
152 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
For more information on the SocketGatewayService and the Foundation Server Administrative
Console, refer to “Multiple Application Server JVMs and SocketGatewayService” on page 85.

Note: As a custom object, the SocketGatewayService can be disabled through
configuration. However, if you disable it, you will not be able to use the
Administrative Console (which, itself is a socket client application). Even if you
do not plan to use the SocketGatewayService, we suggest that you leave it
enabled so the Administrative Console is still functional.

To use the SocketGatewayService:

1. Open a socket on the port number of the SocketGatewayService.

2. Write a request using this format:

Figure 8-14: Length-Encoded SOAP Protocol for SocketGatewayService

For information on the SOAP-encoded Payload Data, refer to “Requirements for Interaction
with JX Services through XML” on page 142.

3. You will receive a response in the same format as your request.

Exceptions with Socket Protocol

For information on exceptions with socket protocol, refer to “Socket Protocol Exceptions” on page
93.

Security and the SocketGatewayService

Your company’s Information Technology (IT) or Management Information Services (MIS)
department protects your internal network so your back-end data stores and legacy systems are
secure and only accessible to trusted clients on your network.

The JVMs which contain your EJBs are on a physical network or subnetwork that enables network
connectivity to your enterprise data stores and legacy systems. The SocketGatewayService resides
on the same JVMs where the EJBs reside. By definition, this is within your company’s secure
network. The only nodes or applications which would be able to access the
SocketGatewayService through TCP/IP are those with network connectivity to the EJB JVMs
within this secure environment. Anyone outside the network, even if they determine the host
name and port number published by the SocketGatewayService, they would not be able to access
the SocketGatewayService and its functionality because it is on the secure network.

Length Payload Data (SOAP-encoded)

10 byte, space-padded
left-justified
Payload Data length
Chapter 8: Creating Foundation Server Components 153

Building a Client Agent
As shown in Figure 8-15, only clients behind the firewall (point B) can access the
SocketGatewayService. Individual HTTP clients (point A) do not have access to backend data,
based on requirements imposed by your IT or MIS department.

Figure 8-15: Security in a Typical Production Deployment

Configuring the Gateway Service

Currently, the system supports one gateway service mode at a time—either sockets or RMI:

• SocketGatewayService—Required for use with thin clients. May also be used for exclusively
Java clients.

• RMIGatewayService—Can be used for exclusively Java clients. Cannot be used with thin
clients.

You configure the gateway service within the GatewayServices.xml configuration file. The
GatewayServices.name tag corresponds to a section which specifies the mode you are using.
154 Foundation Server Developer’s Guide, release 5.7

Building a Client Agent
Code Sample 8-15 shows a sample GatewayServices.xml file with the RMIGatewayService
value commented out. If you want to use the RMIGatewayService, uncomment that value and
comment out the SocketGatewayService value instead. Once you have checked to make sure the
other configuration values work with your system, this is the only change you need to make to
switch the type of gateway service you will use.

<Root>
<Section>gatewayservices

<Tag>GatewayServices.name
<Value>SocketGatewayService</Value>
<!-- <Value>RMIGatewayService</Value> -->

</Tag>
</Section>
<Section>SocketGatewayService

<Tag>classname
<Value>com.chordiant.service.socket.gateway.SocketGatewayService</Value>

</Tag>
<Tag>protocol

<Value>na</Value>
</Tag>

</Section>
<Section>RMIGatewayService

<Tag>classname
<Value>com.chordiant.service.RMIGatewayService</Value>

</Tag>
<Tag>protocol

<Value>RMI</Value>
</Tag>

</Section>
<Section>RMI

<Tag>classname
<Value>com.chordiant.service.RMISmartSkeleton</Value>

</Tag>
<Tag>connectioninformation

<Value>none</Value>
</Tag>

</Section>
</Root>

Code 8-15: Sample GatewayServices.XML File
Chapter 8: Creating Foundation Server Components 155

Building a Client Agent
processRequest Method: Client Agent vs. Service

Figure 8-16 illustrates the processRequest method on the server side and being used in the client
agent.

Figure 8-16: processRequest Method

1. On the client agent, a typed interface might surround the processRequest method. The
request, consisting of five parameters, is passed to the processRequest method on the service.

2. The processRequest method on the service acts as a dispatch method to route the request to
the appropriate service and function.

3. The PayloadData Object is passed as a parameter to processRequest as a Java Object. For the
service to use it as PayloadData in the processRequest dispatch method, it must be cast to
PayloadData.

Note: The processRequest method is overloaded. For more details on
processRequest, see “Additional Forms of processRequest” on page 139.

ClientAgentHelper

The ClientAgentHelper vends client agents to applications when the application requests a client
agent. For details on the ClientAgentHelper, refer to “ClientAgentHelper” on page 61.
156 Foundation Server Developer’s Guide, release 5.7

Building the Client Application
BUILDING THE CLIENT APPLICATION

This section describes how to build a client application using Chordiant 5 Foundation Server. The
client application uses client agents to interact with services running on the application server.

Note: This is an example of a test application. It is not a typical example of a Chordiant
client application, but is a simplistic example to highlight the major points of this
process.

To build a client application:

1. Create a public class for the test application, as shown in Code Sample 8-16.

2. Define the CLASS_NAME and the PACKAGE_NAME as constants.

Code Sample 8-17 shows sample constants you might add within the test application class
definition.

Note: You can choose to define constants within a separate class.

3. Define the main method.

4. Add code to set up the static helpers.

You can use the FatClientStaticHelper.serviceControl method.

5. Add code to log in to the Chordiant 5 Foundation Server system.

Use the SecurityMgrBeanClientAgent.authenticate method, as shown in Code Sample 8-18.

public class TestApplication {
. . .

}

Code 8-16: Test Application

public final static String CLASS_NAME = "TestApplication";
public final static String PACKAGE_NAME = "john.simple.jx.test";

Code 8-17: Sample Constants for the Test Application Class Definition

public static void main(String[] args) {
. . .

}

FatClientStaticHelper.serviceControl (StaticHelperBaseClass. SERVICE_CONTROL_COMMAND_SETUP);

SecurityMgrBeanClientAgent client = (SecurityMgrClientAgent)ClientAgentHelper.getClientAgent(
SecurityMgrClientAgent.CLASS_NAME);

authenticationToken = client.authenticate(userName, userPassword);

Code 8-18: SecurityMgrBeanClientAgent’s authenticate Method
Chapter 8: Creating Foundation Server Components 157

Building the Client Application
6. Add code to enable Network Presence, if applicable.

Use the GatewayHelper.enableNetworkPresence method.

7. Add code to get a client agent.

Use the ClientAgentHelper.getClientAgent method.

8. Call the service methods defined in the client agent.

9. Add code to disable Network Presence for a clean shutdown.

Use the GatewayHelper.disableNetworkPresence method.

Tip: Only disable Network Presence if you enabled it in Step 6 on page 158.

10. Add code to shutdown static helpers for a clean shutdown.

Use the FatClientStaticHelper.servicecontrol method.

networkPresenceKey = GatewayHelper.enableNetworkPresence(userName, authenticationToken);

testClientAgent = (TestClientAgent) ClientAgentHelper.getClientAgent(TestClientAgent.CLASS_NAME);

response = testClientAgent.dohelloecho(userName, authenticationToken, payload);

GatewayHelper.disableNetworkPresence();

FatClientStaticHelper.serviceControl(StaticHelperBaseClass.SERVICE_CONTROL_COMMAND_SHUTDOWN);
158 Foundation Server Developer’s Guide, release 5.7

Implementing a Callback
IMPLEMENTING A CALLBACK

This section describes how to implement a callback using Chordiant 5 Foundation Server, in the
context of a sample service and application. You implement callbacks to enable the service to
request the client application to perform useful work. A callback is similar to a processRequest
method in reverse.

Figure 8-17: Flow of CallBack

You can choose to use callbacks in these scenarios:

• A user is awaiting the availability of a resource. When that resource becomes available, the
service performs a callback to the client agent, which, in turn, will notify the user.

• A supervisor might want to know when VIP customer is created or calls in. Callbacks in the
Customer service can notify the supervisor.

• Push-based process flow — starting a process from the server side.
Chapter 8: Creating Foundation Server Components 159

Implementing a Callback
To implement a callback method:

1. Implement a method within the service to perform the callback.

The method in the service issuing the callback uses the ClientAgentHelper with the
getClientAgentForKey, specifying the client agent’s network presence key, to get the specific
client agent for the callback. Once determined, the service can issue a call to the method
within the client agent, along with the callback data.

The network presence key can be passed as a parameter, as shown in this example. You could
also create your own service to manage clients’ network presence keys for use in callbacks.

Code Sample 8-19 shows a sample method you can create with a service to perform a callback.

private String docallback(String inputData)
{

final String METHOD_NAME = "docallback";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
String retval = null;
String callbackMessage = null;
String callbackResponse = null;
TestClientAgent testClientAgent = null;

System.out.println("TestService.docallback() received: ["+inputData+"]");
try
{

// This service function does a callback to
// a specific client agent using the value
// of the inputData as the networkPresenceKey.
testClientAgent = (TestClientAgent)

ClientAgentHelper.getClientAgentForKey(
TestClientAgent.CLASS_NAME,inputData);

callbackMessage = "A callback message from TestService.docallback()";
System.out.println("TestService.docallback() sending: ["+callbackMessage+"]");
callbackResponse = testClientAgent.dowork(

getServiceLoginName(),
getServiceAuthentication(),
callbackMessage);

System.out.println("TestService.docallback() received: ["+callbackResponse+"]");
}
catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred",
e);

}

Code 8-19: Sample Callback Method
160 Foundation Server Developer’s Guide, release 5.7

Implementing a Callback
Note: This example does not illustrate a typical callback—it was created to show a
callback while keeping the code example short.

Usually callbacks are initiated from an outside stimulus, such as an email, which
is not related to the client.

2. Within the client agent, implement the callback method that you called from the service in the
previous step.

The method calls the client agent on the client side. Typically, you can have this method within
the client agent do nothing more than provide a typed interface that simply passes the request
through to the typeless interface of the client agent using the processRequest call.

Code Sample 8-20 shows a sample method within a client agent to handle the callback from
the service.

retval = "I called you back from TestService.docallback()";
System.out.println("TestService.docallback() returning: ["+retval+"]");

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

public String dowork(String userName, String authentication, String inputData)
{

final String METHOD_NAME = "dowork";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;
Object tmpResponsePayload = null;

try
{

// Set the payload.
requestPayload = new PayloadData();
requestPayload.putDataWithName("theParameterName",inputData);

// Call the remote clientagent.
tmpResponsePayload = processRequest(

userName,
authentication,
TestClientAgent.CLASS_NAME,
TestClientAgent.FUNCTION_DOWORK,
requestPayload);

// Cast the returned payload.
responsePayload = (PayloadData)

(tmpResponsePayload);

// Pull out any needed return values from the payload as appropriate for the
// return value of this method.
retval = (String)(responsePayload.getDataWithName("theParameterName"));

Code 8-20: Sample Client Agent Method to Handle Callback

Code 8-19: Sample Callback Method (Continued)
Chapter 8: Creating Foundation Server Components 161

Implementing a Callback
}
catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred",
e);

}

Code 8-20: Sample Client Agent Method to Handle Callback (Continued)
162 Foundation Server Developer’s Guide, release 5.7

Implementing a Callback
3. Implement the processCallback method within the client agent.

The processCallback method serves as the single entry point for the client agent and
dispatches the incoming request locally based on the incoming method name.

Code Sample 8-21 shows a sample processCallback method within a client agent.

public Object processCallback(
String username,
String authentication,
String serviceName,
String functionName,
Object payload)
throws ServiceException

{
final String METHOD_NAME = "processCallback";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

Object retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;

if ((functionName != null) && (functionName.length() > 0))
{

try
{

// Do a simple "if statement" dispatcher
if (functionName.compareToIgnoreCase(FUNCTION_DOWORK) == 0)
{

// Cast the payload as needed.
requestPayload = (PayloadData)(payload);

// Pull any required parameters out of the payload
// as needed for the typed local function.
String theInputData = (String)(requestPayload.

getDataWithName("theParameterName"));

// Call the specific local function
String theOutputData = localdowork(theInputData);

// Reuse the input payload for the return payload be clearing it out.
requestPayload.removeAllData();
responsePayload = requestPayload;

// Fill the return payload with the appropriate parameters.
responsePayload.putDataWithName(

"theParameterName",theOutputData);

// Assign the response payload to the return
// value of this method.
retval = responsePayload;

}
else
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Unknown function name ["+functionName+"]");

}

Code 8-21: ProcessCallback Method on the Client Agent
Chapter 8: Creating Foundation Server Components 163

Implementing a Callback
4. Implement a local method within the client agent to perform the useful work of the callback
on the client side, as shown in Code Sample 8-22.

}
catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred”,
e);

}
}
else
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Null or zero length function name");

}

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

private String localdowork(String inputData)
{

final String METHOD_NAME = "localdowork";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;

// This clientagent function does nothing except print out the inputData it
// received and echo a hard-coded string.
LogHelper.debug(

PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
“Received: ["+inputData+"]");

System.out.println("!!!!!!!!!!!!!!!!!!!["+inputData+"]!!!!!!!!!!!!!!!!!!!");
retval = "Return data from TestClientAgent.localdowork()";
LogHelper.debug(

PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Returning: ["+retval+"]");

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

Code 8-22: Method on the Client Agent to Perform Callback Work

Code 8-21: ProcessCallback Method on the Client Agent (Continued)
164 Foundation Server Developer’s Guide, release 5.7

Implementing a Callback
5. If time will have elapsed since the last server-client agent communication, you might want to
check on the “health” of the client agent’s connection to the remote service by using the ping
method. The ping method is implemented for you on the ClientAgentBaseClass. This works
for callbacks as well as callins.

Note: Services wanting to make callbacks to clients should NOT routinely use the ping
method, as it makes a full round trip and unbounded use will cause performance
problems. Under normal circumstances, a service should simply make the desired
callback to the client (without calling ping first) and handle any exceptions that
can result.

6. Use the callbackShutdown method to clean up (disconnect) any connections to the remote
client after the service has finished using the callback client agent. Services that do callbacks
must use this method when they finish with a callback client agent. Otherwise, connections
from the application server to the remote clients will build up and out of file descriptors errors
will eventually result.

void ping(String userName, String authenticationToken)
Chapter 8: Creating Foundation Server Components 165

Implementing a Service to Service Call
IMPLEMENTING A SERVICE TO SERVICE CALL

This section describes how to implement a service to service call using Chordiant 5 Foundation
Server. You can use service to service calls to have a service issue a call to a peer service to request
some work to be performed.

Figure 8-18 shows the general flow of a service to service call.

Figure 8-18: Flow of Service to Service Call

A service to service call is the same as a client agent’s calling a service. Here, the service calls a
client agent, which then works as any other client agent as it calls a service.

Note: This section provides the implementation details of a service to service call. If you
are using client agents and services, you do not need to know anything more than
how to use a client agent. These details are provided for your information.
166 Foundation Server Developer’s Guide, release 5.7

Implementing a Service to Service Call
To implement a service to service call:

1. Implement a method within the service to perform the call to the peer service.

The method in the service issuing the call uses the ClientAgentHelper. getClientAgent method
to get the specific client agent for the peer service. Once determined, the service can issue a
call to the method within the client agent, along with the associated data.

Code Sample 8-23 shows a sample method within a service to perform a call to a peer service.

private String doservice2servicecall(String inputData)
{

final String METHOD_NAME = "doservice2servicecall";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;
TestClientAgent2 testClientAgent2 = null;

// This service function, simply calls a peer
// service and returns the given return value.
LogHelper.debug(

PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
“Received: ["+inputData+"]");

try
{

// Get a clientagent to the peer service.
testClientAgent2 = (TestClientAgent2)

ClientAgentHelper.getClientAgent(
TestClientAgent2.CLASS_NAME);

// Call the peer service
retval = testClientAgent2.dojxp(

getServiceLoginName(),
getServiceAuthentication(),
inputData);

}
catch (Throwable e)
{

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred”,
e);

}
LogHelper.debug(

PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Returning: ["+retval+"]");

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

Code 8-23: Service to Service Method
Chapter 8: Creating Foundation Server Components 167

Implementing a Service to Service Call
2. Within the client agent for the peer service, implement the method that you called from the
originating service in the previous step. Include in that method a call to the processRequest
method.

This is the same as using processRequest in any client agent. The processRequest method
serves as the single entry point for the service. A typical implementation for this method is to
dispatch the incoming request to local functions, defined within the class, based on the
function name parameter.

Code Sample 8-24 shows a sample method within a client agent to handle the call from the
originating service.

public String dojxp(String userName, String authenticationToken, String inputData)
{

final String METHOD_NAME = "dojxp";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;
PayloadData requestPayload = null;
PayloadData responsePayload = null;
Object tmpResponsePayload = null;

try
{

// Set the payload.
requestPayload = new PayloadData();
requestPayload.putDataWithName(

"theParameterName",inputData);

// Call the remote JX service
tmpResponsePayload =

processRequest(
userName,
authenticationToken,
TestService2.CLASS_NAME,
TestService2.FUNCTION_DOJXP,
requestPayload);

// Cast the returned payload.
responsePayload = (PayloadData)

(tmpResponsePayload);

// Pull out any needed return values from
// the payload as appropriate for the return
// value of this method.
retval = (String)(responsePayload.

getDataWithName("theParameterName"));
}
catch (Throwable e)
{

Code 8-24: Client Agent Method for the Receiving Peer Service
168 Foundation Server Developer’s Guide, release 5.7

Implementing a Service to Service Call
These four service control methods are called automatically by the infrastructure. You do not
write code to call these methods, but you can control what they do. You must implement
them, but it is up to you how you want to use them.

— setup—initializations, including start caching (the business service base class
includes caching for static data) and getting a Resource Manager. This is called once
when the application starts up.

— reinitialize—to reset the service to its original starting state without shutting it down,
for example refreshing the cache.(The business service base class includes caching for
static data.) This method can be called several times.

— status—to assess status while the service is running. This method can be called
several times.

— shutdown—to provide a clean shut down when the service has finished its function.
This is called once just before exit.

Refer to Chapter 6, “Chordiant 5 Foundation Server Administration” for additional details.

LogHelper.error(
PACKAGE_NAME,
CLASS_NAME,
METHOD_NAME,
"Exception occurred”,
e);

}

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

Code 8-24: Client Agent Method for the Receiving Peer Service (Continued)
Chapter 8: Creating Foundation Server Components 169

Chordiant Resource Manager
3. Implement the local method for the peer service.

Implement the method on the second service as you would any other method.

The local method called by the peer service in the previous step is dojxp. It is a lengthy method
and its implementation can be found in the example code, accessible through the
Documentation/Samples/Services directory on the Installation CD. You can also access
this directory through the Chordiant Tools Platform under Help | Help Contents.

To give you an idea of a basic implementation you need, Code Sample 8-25 shows a basic
method named donothing.

Note: A service communicating to another service through a client agent will always
communicate from one instance of the JX EJB to a different instance of the JX EJB.
This follows J2EE standards for EJB communication. The application server
automatically ensures that a service to service call will take place within the same
JVM, rather than hopping between JVMs, so performance is not impacted.

CHORDIANT RESOURCE MANAG ER
Chordiant 5 Foundation Server uses a Resource Manager to perform these functions:

• Read, load, and cache configuration and metadata information, stored in XML-formatted
configuration files

• Act as an object factory for business objects, business object criteria objects, data accessor
objects, and business object behavior objects

You should always use the object factory methods of the Resource Manager to return instances of
a business object, data accessor, business object criteria object, or business object behavior object.
This is because, among other reasons, the object factory is aware of overrides of business object
behavior, and always returns the customized object, if available.

private String donothing(String inputData)
{

final String METHOD_NAME = "donothing";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

String retval = null;

// This service function, does nothing except
// print out the inputData it recieved and echo
// a hard coded string.
System.out.println("TestService2.donothing() recieved:["+inputData+"]");
retval = "Hello from TestService2.donothing()";
System.out.println("TestService2.donothing() returning: ["+retval+"]");

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);
return retval;

}

Code 8-25: Simplified Method for Doing Work on Peer Service
170 Foundation Server Developer’s Guide, release 5.7

Chordiant Resource Manager
Figure 8-19 illustrates the object model for the Resource Manager.

Figure 8-19: Resource Manager Object Model

Always use the BusinessObjectResourceManager. This resource should have all of the
functionality you will need. If you feel that you need additional functionality, extend this class
and override or add your own methods. Do not remove functionality from the
BusinessObjectResourceManager.

The Resource Manager uses these three types of information:

• Class — Will return an instance of a class and keep it locally for your use.

• String — A generic type for anything you might want to keep locally, such as cache size or the
default location for storing files. As long as the String is not null, it will be cached locally.

• JNDI — Will find the data source in the JNDI space and cache it locally for easy access.

Resource Manager Configuration

You configure a Resource Manager in your {component}.xml configuration file, for example, in
the configuration file for your service.

You can use the Resource Manager to read and cache configuration information, stored in
XML-formatted configuration files. A configuration section within the file enumerates the
required resources, and includes one or more tag elements, specifying the resource key, and a
corresponding value tag.

By convention, you should form the Section labels in the configuration using the Java package
name of the class. For example, a configuration file could contain the following Section label,
which you can use to enumerate resource names.

com.chordiant.bc.services.GenericService
Chapter 8: Creating Foundation Server Components 171

Chordiant Resource Manager
To avoid name conflicts, the Section label is typically the service class name.

Table 8-2 describes the parameters you can configure for the Resource Manager. A sample
Resource Manager file is shown in Code Sample 8-26 on page 173.

Note: You must include these tags in your configuration file if your service uses a
resource manager, that is, if it will be hitting a database. By default, all services
generated with the Business Component Generator include a Business Object
Resource Manager, so your service can interact with a database. You will need to
add the Resource Manager configuration parameters described in Table 8-2 to
the configuration file.

If your service does not interact with a database, override the setup method in
your customized class so the Resource Manager is not initialized.

PARAMETER TAG DESCRIPTION

CMI_FILE The path of the CMI file for the application that
describes the JXP objects. You must specify the
directory and file name of a well-formed CMI file.
If you want to reference more than one CMI file, list
the path to each file, separated by semicolons (;).

There is no default value for this tag.

RESOURCE_TAG_
FOR_SQL_DSN

The string used to request a connection pool
connection from the application server. This name
must be registered with the application service, and
the connection pool must be properly set up.

The valid values for this parameter include any
DataSourceName registered with the application
server.

OBJECT_DIRECTORY The root directory to which objects that have been
transformed into XML strings are written. The files
are named using the following syntax:
object directory.rdbPhysicalName.
attributeName.rdbPrimaryKeyValue.
You can specify any valid, accessible directory for
this parameter. There is no default value.

ENVIRONMENT_NAME The value used during Global Unique Identifier
Generation. This string ensures that the GUIDs are
unique across multiple environments.

You can specify string values less than or equal to
seven characters in length. The system does not
supply a value if you do not specify a value for this
parameter.

Table 8-2: Resource Manager Configuration Parameters
172 Foundation Server Developer’s Guide, release 5.7

Chordiant Resource Manager
Code Sample 8-26 shows a segment of a sample service configuration file containing the Resource
Manager configuration. Notice that some values are using substitutions specified in the
master.dtd file (see “master.dtd” on page 99 for details).

Code 8-26: Sample Resource Manager Configuration

Note: The ResourceValues for both the CMI_PATH and OBJECT_DIRECTORY
sections can have multiple paths listed. Separate each path with a semicolon (;).

<Section>com.chordiant.bc.services.GenericService
<Tag>ResourceName

<Value>CMI_PATH</Value>
</Tag>
<Tag>ResourceName

<Value>chordiantXAds</Value>
</Tag>
<Tag>ResourceName

<Value>ENVIRONMENT_NAME</Value>
</Tag>
<Tag>ResourceName

<Value>OBJECT_DIRECTORY</Value>
</Tag>

</Section>
<Section>com.chordiant.bc.services.GenericService.CMI_PATH

<Tag>ResourceType
<Value>STRING</Value>

</Tag>
<Tag>ResourceValue

<Value>&JXB_META_DATA_ROOT_DIRECTORY;/jxb/cmi.xml</Value>
</Tag>

</Section>
<Section>com.chordiant.bc.services.GenericService.chordiantXAds

<Tag>ResourceType
<Value>JNDI</Value>

</Tag>
<Tag>ResourceValue

<Value>&JXB_XA_DATASOURCE_REF;</Value>
</Tag>

</Section>
<Section>com.chordiant.bc.services.GenericService.ENVIRONMENT_NAME

<Tag>ResourceType
<Value>STRING</Value>

</Tag>
<Tag>ResourceValue

<Value>JXB</Value>
</Tag>

</Section>
<Section>com.chordiant.bc.services.GenericService.OBJECT_DIRECTORY

<Tag>ResourceType
<Value>STRING</Value>

</Tag>
<Tag>ResourceValue

<Value>&JXB_BINARY_DATA_STORAGE_ROOT_DIRECTORY;/bindata</Value>
</Tag>

</Section>
Chapter 8: Creating Foundation Server Components 173

Chordiant Resource Manager
Using this configuration, you could then instantiate an instance of the
BusinessObjectResourceManager using the constructor format shown in Code Sample 8-27.

Code Sample 8-28 shows a sample constructor.

You can use each resource name, prefixed with the package name, as a section name with which to
read a configuration for each resource (resource type and resource value).

Configuring for Multiple Data Sources

You can configure the Resource Manager for multiple data sources.

To configure the Resource Manager for more than one data source:

1. Configure the data sources in your development environment. In this example, there is one
Oracle and one DB2 data source.

2. Configure your service to have multiple data sources, as shown in Code Sample 8-29.

3. Make sure the JNDI for your data source above matches the JNDI value you specified in
Step 1.

new BusinessObjectResourceManager("package name",
"service class name (section name in configuration file)")

Code 8-27: BusinessObjectResourceManager Constructor Format

new BusinessObjectResourceManager("com.chordiant.bc.services",
"com.chordiant.bc.services.GenericService")

Code 8-28: Sample BusinessObjectResourceManager Constructor

<Section>com.chordiant.bd.services.AccountService
<Tag>ResourceName

<Value>chordiantNoXAds</Value>
</Tag>
<Tag>ResourceName

<Value>chordiantDb2NoXAds</Value>
</Tag>

...
<Section>com.chordiant.bd.services.AccountService.chordiantNoXAds

<Tag>ResourceType
<Value>JNDI</Value>

</Tag>
<Tag>ResourceValue

<Value>chordiantNoXAds</Value>
</Tag>

</Section>
<Section>com.chordiant.bd.services.AccountService.chordiantDb2NoXAds

<Tag>ResourceType
<Value>JNDI</Value>

</Tag>
<Tag>ResourceValue

<Value>chordiantDb2NoXAds</Value>
</Tag>

</Section>

Code 8-29: Service Configuration File Configured for Multiple Data Sources
174 Foundation Server Developer’s Guide, release 5.7

Chordiant Resource Manager
4. The Resource Manager for account service configured here will have access to both the Oracle
and DB2 data sources through calls like:

where DSN is the data source resource name specified in the XML configuration file.

Using the Factory Methods

The Business Object Resource Manager includes a set of factory methods that you can use to create
objects. The Business Object Resource Manager loads metadata information which drives the
object factory, and returns specific objects such as the Business Object, the Business Object Criteria
object, the Data Access object, and the Business Object Behavior object.

If you are making calls from the server side, call the Business Object Resource Manager (or
Business Object Factory) methods directly. If you are making client-side calls, use the Business
Object Factory Client Agent to reach the Business Object Factory.

The Business Object Resource Manager contains the following factory methods:

• getBusinessObjectForName—Returns an instance of a business object for the specified BO
name.

• getBusinessObjectBehaviorForName—Returns an instance of a Business Object Behavior
object for the specified name.

• getBusinessObjectBehaviorForObject—Returns an instance of a Business Object Behavior
object for the specified name.

currentPool = (javax.sql.DataSource)myResourceManager.getResourceForName(DSN);

public final Object getBusinessObjectForName(String name) throws Exception

Code 8-30: getBusinessObjectForName Method Signature

NullPartyRelationship nullPartyRelationship = (NullPartyRelationship)
myResourceManager.getBusinessObjectForName(PartyRelationshipBehavior.CLASS_NAME);

Code 8-31: Using the getBusinessObjectForName Method

public final BusinessObjectBehavior
getBusinessObjectBehaviorForName(String name) throws Exception

Code 8-32: getBusinessObjectBehaviorForName Method Signature

PartyRelationshipBehavior partyRelBOB = (PartyRelationshipBehavior)
myResourceManager.getBusinessObjectBehaviorForName(person.CLASS_NAME);

Code 8-33: Using the getBusinessObjectBehaviorForName Method

public final BusinessObjectBehavior
getBusinessObjectBehaviorForObject(Object businessObject) throws Exception

Code 8-34: getBusinessObjectBehaviorForObject Method Signature

PartyRelationshipBehavior partyRelBOB = (PartyRelationshipBehavior)
myResourceManager.getBusinessObjectBehaviorForObject(PartyRelationshipBO);

String relationshipCode = partyRelBOB.getPartyRelationshipTypeCode(
roleTypeCode, relatedRoleTypeCode);

Code 8-35: Using the getBusinessObjectBehaviorForObject Method
Chapter 8: Creating Foundation Server Components 175

CustomObjects and the CustomObjectHelper
• getBusinessObjectCriteriaForName—Returns an instance of a Business Object Criteria
object for the specified name.

When specifying the name parameter, use the business object name with “Criteria” appended.

• getDataAccessForName—Returns an instance of a Data Access object for the specified
name.

When specifying the name parameter, use the business object name with “DataAccess”
appended.

For an example of using the Resource Manager for persistence, see “The Resource Manager
and Persistence” on page 219 and “Example of Using Persistence Server” on page 231.

CUSTOMOBJECTS AND THE CUSTOMOBJECTHELPER

CustomObjects are a feature of the JX architecture. Their main purpose is to provide the ability to
run Java code outside the constraints of the J2EE EJB framework yet still inside the container of the
J2EE application server. Examples of CustomObjects include cache helpers, socket servers, and
Remote Method Invocation (RMI) objects.

The JX CustomObject design follows a singleton pattern in that there is one instance of each
configured JX CustomObject class per application server replicate (or JVM). In a development
situation, this will usually mean that there is only one instance of each configured CustomObject,
since there is typically only one replicate of the J2EE application server. In a production
environment, however, you might have JX running on multiple physical servers with multiple
J2EE application server replicates per server. In this situation, there will be many replicates of each
configured CustomObject (one in each application server replicate). In fact, you will have more
than one replicate running on the same server box.

For information on the SocketGatewayService, a specific CustomObject provided with Chordiant
Foundation Server, see “Using the Foundation Server SocketGatewayService” on page 151.

public final BusinessObjectCriteria
getBusinessObjectCriteriaForName(String name) throws Exception

Code 8-36: getBusinessObjectCriteriaForName Method Signature

(PartyRelationshipViewTableCriteria)
myResourceManager.getBusinessObjectCriteriaForObject(
PartyRelationshipViewTableCriteria.CLASS_NAME);

Code 8-37: Using the getBusinessObjectCriteriaForObject Method

public final DataAccess getDataAccessForName(String name) throws Exception

Code 8-38: getDataAccessForName Method Signature

Vector allCommonObjectRoles = myResourceManager.getDataAccessForObject(
PartyRoleTableDataAccess.CLASS_NAME).retrieveRay(prtBOC);

Code 8-39: Using the getDataAccessForObject Method
176 Foundation Server Developer’s Guide, release 5.7

CustomObjects and the CustomObjectHelper
CustomObject Requirements and Features

A JX CustomObject:

• Must be declared as a public class.

• Must implement a public default (no-parameter) constructor.

• May implement the JX ServiceControl interface.

• May implement a non-blocking main().

• Can be a subclass of any class hierarchy.

• Can perform valid Java logic

Note: Be careful with this last bullet. Remember that the CustomObject runs inside the
same J2EE application server JVM that servlets, JSPs, and EJBs are running in. So
unbounded processing scenarios could interfere with the health of the
surrounding JVM.

Caution: In the near future, the J2EE specification will prohibit spawning threads from
code within an EJB. For this reason, we suggest you avoid spawning threads from
within CustomObjects.

CustomObjectHelper

Configuring CustomObjects

CustomObjects are instantiated and managed by the JX CustomObjectHelper when JX starts up.
The JX CustomObjectHelper instantiates CustomObjects according to a CustomObject
configuration section in the JX XML configuration files. Consequently, the classpath of the
associated J2EE application server replicate must contain any needed classes to support the
CustomObject.

The name of the CustomObject configuration section that the JX CustomObjectHelper uses is
specified on the surrounding JVM’s system properties through the
-Dchordiant.customobject.configuration system property. In fact, it is possible to define different
CustomObject configurations for each J2EE application server replicate in a distributed space.
Chapter 8: Creating Foundation Server Components 177

CustomObjects and the CustomObjectHelper
Code Sample 8-40 shows a CustomObject configuration section defining three CustomObjects.

The CustomObjectsHelper is in the package
com.chordiant.core.customobjects.CustomObjectsHelper.

Managing CustomObjects

CustomObjects can implement an optional interface that enables them to be managed externally.
The JX ServiceControl interface enables CustomObjects to implement four standard commands:

• setup

• shutdown

• refresh (typically a combination of shutdown and setup commands)

• status

The CustomObjectHelper will invoke the setup command on a CustomObject after instantiating it.
The CustomObjectHelper will also call the shutdown command at the time that the JX application
is being brought down. CustomObjects that implement the JX ServiceControl interface can be
monitored and managed through the JX Administration Tool. See “Chordiant 5 Foundation Server
Administration” on page 63 for more information.

In addition to the communicating through the ServiceControl interface, the CustomObjectHelper,
also invokes the CustomObject’s main method, if it exists.

Here is the order in which the CustomObjectHelper interacts with configured CustomObjects
when starting up:

1. The CustomObjectHelper instantiates all configured CustomObjects. This invokes the
CustomObject constructors.

2. For each CustomObject, the CustomObjectHelper invokes the setup command via the
ServiceControl interface (if implemented).

3. For each CustomObject, the CustomObjectHelper invokes the main method (if implemented).

Minimally, the CustomObjectHelper will instantiate configured CustomObjects. If the
CustomObjectHelper is for any reason unable to create a configured CustomObject, it will log an
error and move on to the next CustomObject.

<Section>CustomObjectConfiguration
<Tag> mycfgfile.name

<Value>examples.hello.HelloImpl</Value>
</Tag>
<Tag> mycfgfile.name

<Value>examples.hello.JXServerSocketTester</Value>
</Tag>
<Tag> mycfgfile.name

<Value>com.chordiant.custom.mytesters.JXServerSocketTester</Value>
</Tag>

</Section>

Code 8-40: CustomObject Configuration Section
178 Foundation Server Developer’s Guide, release 5.7

CustomObjects and the CustomObjectHelper
The ServiceControl Interface

The ServiceControl interface (com.chordiant.service.ServiceControl) consists of a single method:

ServiceControlResponse serviceControl(ServiceControlRequest request)

Inside this method, the CustomObject can obtain the request command via the
ServiceControlRequest interface and determine its response.

The following constants represent the standard request commands:

BaseServiceControlRequest.SETUP_COMMAND

BaseServiceControlRequest.SHUTDOWN_COMMAND

BaseServiceControlRequest.REINITIALIZE_COMMAND

BaseServiceControlRequest.STATUS_COMMAND

The ServiceControlResponse interface enables you to provide the caller with a textual feedback
on the processing of the request and a success indicator. A common class that implements this
interface is BaseServiceControlResponse.

Code Sample 8-41 illustrates the Java imports and implementation required for participating in
the JX ServiceControl framework.

import com.chordiant.service.ServiceControl;
import com.chordiant.service.CommandException;
import com.chordiant.service.ServiceControlRequest;
import com.chordiant.service.ServiceControlResponse;
import com.chordiant.service.BaseServiceControlRequest;
import com.chordiant.service.BaseServiceControlResponse;
import com.chordiant.core.ThinClientStaticHelper;
…
public ServiceControlResponse serviceControl(ServiceControlRequest request) throws CommandException
{

ServiceControlResponse response = null;
String command = null;

if (request == null)
{
 String errorString = "Request is null";
 throw new CommandException(errorString);
}

command = request.getCommand();
if ((command == null) || (command.length() == 0))
{
 String errorString = "Command is null or zero length";
 throw new CommandException(errorString);
}

if (command.compareToIgnoreCase(BaseServiceControlRequest.SETUP_COMMAND) == 0)
{

response = setup(request);
}

Code 8-41: Required Code for JX ServiceControl Framework
Chapter 8: Creating Foundation Server Components 179

CustomObjects and the CustomObjectHelper
else if (command.compareToIgnoreCase(BaseServiceControlRequest.SHUTDOWN_COMMAND) == 0)
{

response = shutdown(request);
}
else if (command.compareToIgnoreCase(BaseServiceControlRequest.REINITIALIZE_COMMAND) == 0)
{

response = reinitialize(request);
}
else if (command.compareToIgnoreCase(BaseServiceControlRequest.STATUS_COMMAND) == 0)
{

response = status(request);
}
else
{

String errorString = "Unknown command: ["+command+"]";
throw new CommandException(errorString);

}

return response;
}

private ServiceControlResponse setup(ServiceControlRequest theRequest) throws CommandException
{

ServiceControlResponse retval = null;
// Process the request …
retval = new BaseServiceControlResponse();
retval.setResponse("["+METHOD_NAME+"] was Ok");
return retval;

}

private ServiceControlResponse shutdown(ServiceControlRequest theRequest) throws CommandException
{

ServiceControlResponse retval = null;
// Process the request …
retval = new BaseServiceControlResponse();
retval.setResponse("["+METHOD_NAME+"] was Ok");
return retval;

}

private ServiceControlResponse reinitialize(ServiceControlRequest theRequest) throws CommandException
{

ServiceControlResponse retval = null;
// Process the request …
retval = new BaseServiceControlResponse();
retval.setResponse("["+METHOD_NAME+"] was Ok");
return retval;

}

private ServiceControlResponse status(ServiceControlRequest theRequest) throws CommandException
{

ServiceControlResponse retval = null;
// Process the request …
retval = new BaseServiceControlResponse();
retval.setResponse("["+METHOD_NAME+"] was Ok");
return retval;

}

Code 8-41: Required Code for JX ServiceControl Framework (Continued)
180 Foundation Server Developer’s Guide, release 5.7

Chapter 9
Chordiant Persistence Server
Chordiant Persistence Server enables a service to access information in an Enterprise Information
System (EIS), such as an SQL-based RDBMS, WebSphere MQ, or CICS system, and perform
persistence operations to store and retrieve data from these data stores. Persistence Server does
this by providing a standard CRUD (Create, Retrieve, Update, and Delete) interface to business
services.

Figure 9-1 illustrates the logical representation of the Persistence Server layer. Note that in a
deployed model, the Persistence Server, EJBs, and servlets all typically reside in the same JVM.

Figure 9-1: Logical Representation of Persistence Server Architecture
181

You can use the Chordiant Persistence Server component to add persistence functionality to the
business services you write. Persistence Server offers these capabilities:

• An XML-based meta model — The meta model is fully extensible, enabling you to add new
information about business objects within your application.

• Object-oriented design tool UML Extenders — Using the supplied UML Extenders for
Rational Rose, along with ones you can develop, you can have Persistence Server
automatically create the metadata files used by other parts of the system.

• An extensible code generator — You can use standard object-oriented design tools to
generate the Java classes for the Data Accessor interface, defining standard CRUD operations.

• Advanced plug-in connectors — Using an extensible architecture, you can create new data
connectors, in addition to using the SQL, and WebSphere MQ connectors supplied with
Chordiant Persistence Server.

Note: Chordiant Persistence Server offers a superset of Java Connector Architecture
(JCA) functionality. In particular, Persistence Server supports any JCA connector,
but is not bound to any JCA meta model. And while JCA has a specific connector
interface, Persistence Server supports that interface and others.

It is important to note that Chordiant Persistence Server uses existing object-oriented technology
at its base. This technology includes XML Metadata Interchange (XMI), used by object-oriented
design tools to output models, and Extensible Stylesheet Language (XSL) used to format XML.
With this technology, Chordiant Persistence Server can leverage object-oriented design tools and
can be customized through XSL stylesheets.
182 Foundation Server Developer’s Guide, release 5.7

The Development Cycle
THE DEVELOPMENT CYCLE

The development cycle for Chordiant Persistence Server includes the participation of several
people occupying the following roles when incorporating persistence into the application design:

• Business Analyst

• User Interface Designer

• Database Specialist

• Application Developer

Figure 9-2 illustrates the development cycle when working with Chordiant Persistence Server.

Figure 9-2: Chordiant Persistence Server Development Cycle
Chapter 9: Chordiant Persistence Server 183

The Development Cycle
1. The Business Analyst creates the conceptual model of the business data and business behavior
using an object-oriented design tool such as Rational Rose.

The Business Analyst works in the context of business objects, such as customers and
accounts, as well as behaviors related to these objects, such as creating a customer and listing
an account. In creating the conceptual model, the Business Analyst does not need to consider
Foundation Server-related issues, focusing instead on capturing the business objects
associated with the organization.

Once the Business Analyst has created the conceptual model and output the XMI definition,
both the User Interface Designer and the Application Developer can begin using the model to
create the interface for the web application and business services respectively.

This enables parallel development to occur as the developers code to the interface (but
without being able to actually run the application or service at this stage).

2. The User Interface Designer builds the screens and creates the front end for the web
applications.

The User Interface Designer uses Chordiant Interaction Designer to create the web application
interface in relation to the business objects and behavior defined by the Business Analyst.

3. The Database Specialist maps the conceptual model created by the Business Analyst to the
database environment within the organization.

The Database Specialist maps objects defined by the Business Analyst to tables within the
database, or creates new tables as required. The Database Specialist works with the
underlying data store, such as an SQL-based RDBMS or WebSphere MQ data store, and uses
the UML Extender for Rational Rose with the model to define the persistence needs of the
application.

4. The Application Developer takes the output of the object model and runs the Business
Component Generator to create the Java classes required for persistence. The Application
Developer then modifies the Java code.

Typically, the Application Developer creates business services that capture the business logic
of the application and perform create, read, update, and delete (CRUD) operations on the
objects defined by the Business Analyst.
184 Foundation Server Developer’s Guide, release 5.7

The Development Cycle
Persistence Server Process Flow

Chordiant Persistence Server offers significant flexibility in how Business Analysts, Users
Interface Designers, Database Specialists, and Application Developers work together to produce
metadata and programatic interfaces for supporting persistence within applications.

This section describes the process flow for developing systems using Persistence Server, along
with the metadata and interfaces produced at each step of the process, as illustrated in Figure 9-3.

Numbers in the diagram correspond to step numbers in the text section beginning on page 186.

Figure 9-3: Using Chordiant Persistence Server
Chapter 9: Chordiant Persistence Server 185

The Development Cycle
The process flow for developing applications using Chordiant Persistence Server is:

1. The Business Analyst creates the conceptual model of the business data and business behavior
using an object-oriented design tool.

The direct output from the object-oriented design tool is an XML Metadata Interchange (XMI)
file. While XMI offers a portable format between object-oriented design tools, the format
contains extra information not required by Persistence Server, such as visualization details,
among other information.

2. The Business Analyst, Database Specialist, or both use mapping information to relate the
business data to specifics within the database environment.

Using the Chordiant UML Extender for Rational Rose, the Database Specialist maps the
business data to the underlying data store, adding Persistence Server metadata to the CMI file,
and thus defining the persistence information for the application. In mapping the data, the
Database Specialist must take into account the data types supported in the underlying data
store, as described in “Data Type Support” on page 225.

3. The Business Analyst generates a Chordiant Metadata Information (CMI) file from the XMI
output.

The generated CMI file contains the core information concerning the conceptual model, as
illustrated in Code Sample 9-1.

For more information about CMI and metadata, see the Chordiant 5 Foundation Server
Application Components Developer’s Guide.

4. The Business Analyst optionally generates an XML Schema Definition (XSD) file for use by the
User Interface Designer.

5. The User Interface Designer uses the Chordiant Interaction Designer to build the screens and
create the front end for the web applications.

<?xml version =”1.0” ?>
<root>

<package>
<name>test.jx.simple</name>

<class>
<name>MyObject</name>
<parentClass>Object</parentClass>

<attribute>
<name>Type</name>
<javaType>java.lang.String</javaType>
<multiplicity>1..1</multiplicity>

</attribute>
</class>

</package>
</root>

Code 9-1: Sample CMI File
186 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
6. The Application Developer generates the Java classes for the Persistence Server interface,
using the Business Component Generator.

The Business Component Generator generates these Java classes:

— {yourobject}.java: Contains the business objects (BOs) for the Persistence Server
interface. The objects define only basic getter and setter methods.

— {yourobject}Behavior.java: Contains a skeleton for the server-side business object
behavior methods.

— {yourobject}Criteria.java: Contains methods defining the business object criteria.
Business object criteria enable developers to identify groups of business data, such as
equivalences, ranges, and sets. For example, you could use business object criteria to
find all customers within a certain age, or with a certain last name.

— {yourobject}DataAccess_{databasename}.java: Defines the Data Accessor, which
offers methods for interacting with the specific data store, such as Oracle or DB2,
using SQL or WebSphere MQ. The Data Accessor runs on the application server, and
can only be called by a service—the Data Accessor cannot be invoked by a client. The
parent class, {yourobject}DataAccess.java, has minimal functionality. Use the data
accessor with the database name specified.

The Business Component Generator uses two inputs to generate the Java classes: the CMI file,
and an Extensible Style Language (XSL) stylesheet. Based on definitions in the XSL stylesheet,
the tool generates the appropriate Java code for the particular underlying data store.

By customizing the XSL stylesheet, you can change the Java classes you generate. See
“Chordiant Persistence Server and XSL Stylesheets” on page 233 for more information.

7. The Application Developer creates services and client agents using the CRUD interface
defined within the Data Accessor.

DATA ACCESSOR OVERVIEW

The Data Accessor is a server-side component that enables you to create business services that are
decoupled from the data source, such as a database or file. You access the functionality of the Data
Accessor through an Application Programmer Interface (API) consisting of 31 methods.

Business services that require a Data Accessor object issue a request to the Resource Manager,
along with the name of the requested Data Accessor. The Resource Manager returns an
instantiated object containing the interface. For information on the Resource Manager, refer to
“Chordiant Resource Manager” on page 170 and to the Chordiant 5 Foundation Server Application
Components Developer’s Guide.

Chordiant 5 Foundation Server offers three Data Accessors for the following data stores as part of
the standard implementation:

• Oracle

• DB2UDB

• WebSphere MQ
Chapter 9: Chordiant Persistence Server 187

Data Accessor Overview
You can optionally implement a Data Accessor for other data stores, as required.

Note: Class attribute names are limited to 27 characters or fewer. They are used as
unique identifiers for joins and are limited in length by the database. This
example shows how the attribute name is used.

select {table name1}.{column name} as rs_{attribute name} from {table
name1},{table name2} where {table name1}.{primary key column}={table
name2}.{primary key column}

This section describes the following topics related to the Data Accessor:

• “Interface Notation” on page 188

• “Data Access Methods” on page 192

• “Global Unique Identifier (GUID) Generation” on page 194

• “Business Object Criteria” on page 196

• “Optimistic and Pessimistic Locking” on page 197

• “Order By Interface” on page 207

• “Count Interface” on page 210

• “Performing Transactions” on page 211

• “Performing Joins” on page 215

• “CLOB Support” on page 218

• “The Resource Manager and Persistence” on page 219

Interface Notation

The Data Accessor uses these four concepts to represent the number and range of records returned
by data access operations:

• Point

• Set

• Ray

• Segment

This section describes each of these concepts, and illustrates an example use of the concept within
the Data Accessor API.
188 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Points

A point represents a single record within a table.

Note: You can also define a point with more than one primary key. The combination of
the primary keys must be unique to specify a point. For example, you can define
a point like this:

You must specify all primary keys in the metadata. For more information, refer to
the “Metadata” chapter of the Chordiant 5 Foundation Server Application
Components Developer’s Guide.

Figure 9-4 illustrates the selection of points within two tables.

Figure 9-4: Points

The createPoint method works with a point within a table.

Methods dealing with points throw an UnexpectedMultipleRecordsException exception if more
than one record meets your criteria.

x={unique_value}

PrimaryKey1 + PrimaryKey2 = {unique_value}

createPoint(Object);
Chapter 9: Chordiant Persistence Server 189

Data Accessor Overview
Sets

A set represents a grouping of non-sequenced records, based on uniquely-specified primary keys,
within a table. Use this format to create a set.

Figure 9-5 illustrates the selection of sets within two tables.

Figure 9-5: Sets

Here is an example of a method that works with a set within a table.

Rays

A ray represents all records above or below a value within a table, and is defined by a single
BusinessObjectCriteria. A ray can be defined in any of the following manners, depending on
whether the ray is inclusive or exclusive:

Figure 9-6 illustrates the selection of rays within two tables.

Figure 9-6: Rays

Here is an example of a method that works with a ray within a table.

 x={value1}, {value2}, ...

updateSet(BusinessObjectVector);

x > {value1}
x >= {value1}
x < {value1}
x <= {value1}

 deleteRay(BusinessObjectCriteria);
190 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
You specify the BusinessObjectCriteria to define the beginning and direction of the SELECT
statement.

Segments

A segment represents all records within a range in a table, and is defined by two business object
criteria. A segment can be defined as shown in the examples below, depending on whether the
segment is inclusive or exclusive:

Note that all operations defining segments perform a logical AND operation. The Data Accessor
API does not provide multi-segment operations. When you need to implement a logical OR
operation, you can do so using multiple calls.

Figure 9-7 illustrates the selection of segments within two tables.

Figure 9-7: Segments

Here is an example of a method that works with a segment within a table.

You specify the BusinessObjectCriteria to define the beginning and end of the SELECT statement.

x >= {value1} AND X <= {value2}
x > {value1} AND X < {value2}
x <= {value1} AND X < {value2}
x < {value1} AND X <= {value2}

retrieveSegment(BusinessObjectCriteria1, BusinessObjectCriteria2);
Chapter 9: Chordiant Persistence Server 191

Data Accessor Overview
Data Access Methods

This section outlines the Data Access methods supported by Relational Database Management
Systems using SQL and WebSphere MQ data stores.

Table 9-1 outlines the available methods supported by the SQL Data Accessor.

SQL DATA ACCESS METHODS

• countPoint • updatePoint

• countRay • updatePointOptimistic

• countSegment • updatePointPessimistic

• createPoint • updateSegment

• createSet • updateSet

• retrievePoint • updateSetOptimistic

• retrieveSet • updateSetPessimistic

• retrieveRay • updateRay

• retrieveSegment • deletePoint

• retrieveRayOrdered • deleteRay

• retrieveSegmentOrdered • deleteSegment

• retrievePointPessimistic • deleteSet

• retrieveSetPessimistic • deletePointOptimistic

• retrieveRayPessimistic • deletePointPessimistic

• retrieveSegmentPessimistic • deleteSetOptimistic

• deleteSetPessimistic

Table 9-1: SQL Data Access Methods
192 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Table 9-2 outlines the available methods supported by the WebSphere MQ Data Accessor.

The methods you select depend on the number and range of records you need returned. For
example, in the case of the retrieve operations, you can select from among the following methods
to retrieve one or more records, depending on your requirement:

• retrievePoint — Retrieves a single person by a unique value

• retrieveSet — Retrieves a group of people, each with unique values

• retrieveRay — Retrieves a group of people of age 25 and above

• retrieveSegment — Retrieves a group of people of age 29 to 30

Performance Tip for Updating Data

When you make a small change to an object, you must update all of the attributes in the database.
Some objects can be quite large and can contain information that is extraneous to your objective. In
these cases, persisting the large objects might be overly expensive. For most of these large objects,
only certain attributes are read and written to frequently. To enhance performance, you can
consider creating a summary view of a large object, which contains only the subset of attributes
which are frequently read or written to. The summary view is a common object-oriented design
concept. By using a shallow object, you avoid moving data that is not relevant to your transaction,
thus saving time and resources. To improve your performance, model summary views alongside
the larger object they are related to and use them when appropriate to avoid handling excess data.

By default, null values are updated to the database.

WEBSPHERE MQ DATA ACCESS METHODS

• countPoint • updatePointPessimistic

• createPoint • updateSet

• createSet • updateSetPessimistic

• retrievePoint • deletePoint

• retrieveSet • deleteSet

• retrievePointPessimistic • deletePointPessimistic

• retrieveSegmentPessimistic • deleteSetPessimistic

• updatePoint

Table 9-2: WebSphere MQ Data Access Methods
Chapter 9: Chordiant Persistence Server 193

Data Accessor Overview
Global Unique Identif ier (GUID) Generation

The Chordiant Global Unique Identifier (GUID) is a system-wide identifier that is guaranteed to
be unique. Chordiant 5 Foundation Server uses the GUID to:

• Uniquely identify a record within the system

When defining the primary key for a record, you can instruct the system to create a GUID as
part of the primary key auto generation method, either within your object model or within the
CMI file.

• Issue a unique lock token for a record

Optimistic locking uses a lock token that is updated each time the record is updated.

The GUID has the following format:

The interpretation of each element is shown here:

• SEED—An operational space-unique value for each Resource Manager, represented by a
20-character string.

• TIMS—Time in milliseconds, represented by a 20-character string.

• ENVIRONMENTCOUNTER—A counter managed by the Resource Manager, represented by
a five-character string.

Note: Underscores separate the three fields in the GUID. All fields within the GUID are
fixed length, with numeric fields right-justified and zero-padded.

SEED_TIMS _ENVIRONMENTCOUNTER
194 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Specifying the GUID

To specify automatic GUID generation within your object model using Chordiant’s UML
Extender for Rational Rose:

1. In your object model, open the class specifications.

2. In the Class Specifications window, select the JXP SQL tab.

Figure 9-8: Specifying Primary Key Generation within Rational Rose

3. Click in the Value column next to Primary Key Generation and select Auto.

4. Click OK.

To specify automatic GUID generation within the CMI file, use this tag.

<rdbPrimaryKeyGenerationType> true </rdbPrimaryKeyGenerationType>
Chapter 9: Chordiant Persistence Server 195

Data Accessor Overview
Business Object Criteria

Use business object criteria to identify groups of business data, such as ranges and equalities,
when working with the Persistence Server API. The business object criteria methods are created
automatically when you generate the Java classes using the object-oriented design tools, as
described in “Persistence Server Process Flow” on page 185.

When using the business object criteria, you can specify your equivalency criteria using these
constants:

• CRITERIA_EQUAL — equality criteria

• CRITERIA_NOT_EQUAL — inequality criteria

• CRITERIA_GREATER — greater than criteria

• CRITERIA_LESSER — less than criteria

• CRITERIA_EQUAL_GREATER — greater than or equal to criteria

• CRITERIA_EQUAL_LESSER — less than or equal criteria

The business object criteria for a particular object define methods that enable you to define rays
and segments. You can also use business object criteria to identify additional information for an
attribute. This is because Chordiant Persistence Server associates a criteria with every attribute
within an object.

For example, you could use business object criteria to find all customers matching a particular
income range, or living in a specific county. You could also use business object criteria to order
your returned results.

Code Sample 9-2 illustrates how to retrieve all persons living in “York” county with last names
greater than “Smith”.

PersonCriteria myPerson = new PersonCriteria();
myPerson.setCounty("York");
myPerson.setCountyCriteria(BusinessObjectCriteria.CRITERIA_EQUAL);
myPerson.setLastName("Smith");
myPerson.setLastNameCriteria(BusinessObjectCriteria.CRITERIA_GREATER);
DataAccess myDA =

resourceManager.getDataAccessForName(myPerson.CLASS_NAME + "DataAccess");
Vector returnPersons = myDA.retrieveRay(myPerson);

Code 9-2: Code Sample Demonstrating Criteria
196 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Optimistic and Pessimistic Locking

The Data Accessor offers these two data record locking mechanisms for the Foundation Server,
both of which are data source independent:

• Optimistic locking — A column locking strategy where each record has a lock column that is
checked before update operations are performed. Optimistic locking establishes a shared
(non-exclusive) lock on the record.

• Pessimistic locking — Data is retrieved and locked. Pessimistic locking establishes an
exclusive lock on the record.

Notes: The locking strategy you use for any particular record should be consistent within
a data source. See “Caution: Two Locking Strategies on Same Data” on page 202
for details.

Locking strategies are defined at the class level. A class can specify either
optimistic or pessimistic locking, but not both. Classes used to access the same
data should use the same locking strategy. See page 202 for more information.

Do not mix locking strategies within an object graph. All objects within a graph
should have the same strategy as the head object.

Both optimistic and pessimistic locking adhere to these rules:

• All locks have a configurable life span, after which your application can release the lock.

This prevents deadlocks (stalemates between users) and orphan locks (locks left over at the
end of a process) from accumulating in the system.

• The business service layer maintains conformance to locking strategies.

The business service must implement the business process choices and business actions with
regard to lock management. The business service, or a delegated service, is also responsible
for all exception handling that might occur during lock conflicts.

This section describes these topics related to optimistic and pessimistic locking:

• “Optimistic Locking” on page 198

• “Pessimistic Locking” on page 199

• “Optimistic and Pessimistic Locking in One Model” on page 200

• “Optimistic and Pessimistic Locking API” on page 203

• “Examples of Optimistic and Pessimistic Locking” on page 205
Chapter 9: Chordiant Persistence Server 197

Data Accessor Overview
Optimistic Locking

Optimistic locking uses a token to coordinate the update of records in a table. In a distributed
environment, this token must be unique and not repeated throughout the entire environment.
Chordiant Persistence Server uses the Chordiant GUID as the token for optimistic locking.

In optimistic locking, the system updates the lock token every time a record is written. When
another process attempts to write to that record, the system compares the lock token received
when the record was retrieved against the current lock token. If the two are different, a
LockUnavailableException is thrown. When this happens, the second process trying to write to the
record must reconcile its changes with the new record in the table.

Optimistic locking methods have the following operational behavior with respect to the basic data
store operations:

• Create — With the createPoint and createSet methods, the system generates a new lock
token, and stores it in the database.

• Retrieve — The lock token stored in the database is returned (on every call).

• Update — If the lock token previously retrieved matches the one in the database, the update
operation is performed. Otherwise, an exception is raised. The lock token is updated
whenever the row is updated. Note that the update operation is not supported for rays and
segments.

• Delete — The record is deleted using the lock token. Note that the delete operation is not
supported for rays and segments.

Optimistic locking has a first write, next write failure pattern. This means that in the case when two
entities read a particular record, if the first entity then performs a subsequent write, the second
entity will receive a optimistic lock exception if it also tries to write. At this point, the second entity
must re-read the new record and reconcile the differences between their changes and the new
record.

Note: Optimistic locking does not place an exclusive lock on the record, and therefore,
there is a possibility of operational data loss since reconciling of the differences
between records is dependent upon the defined business and application
processes.

To use optimistic locking on a class, the lock strategy on the class should be set to optimistic. One
of the class attributes must be a String and marked as the LockField (LockField as true). In fact, the
LockField should be in addition to other attributes and should not be modified. The LockField is
controlled by the system and the unique lock value will be generated and placed within this
attribute and also within the corresponding column.
198 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Figure 9-9 illustrates an example of portions of a CMI file used to define optimistic locking for the
Customers table. Note that Col_1 has the LockField specified as true, and the javaType specified as
java.lang.String, as required.

Figure 9-9: Specifying a Lock Field

Optimistic locking is useful when many people might want to access the same data concurrently.
It allows for maximum throughput of data that is not possible under pessimistic locking strategy,
where one person’s accessing a record would prevent all others from even viewing it.

Pessimistic Locking

Pessimistic locking enables you to establish exclusive locks on a record. However, when using
pessimistic locks, your business services must account for the possibility of record deadlocks
(stalemates between users) and orphan locks (locks left over at the end of a process).

With pessimistic locking, only one process can update a record at any given time. When a process
attempts to retrieve a record that is locked (using the retrievePessimistic method), the
LockUnavailableException is thrown.

For this reason, Chordiant recommends that you use pessimistic locking only on areas with low
throughput. For maximum throughput of data, use optimistic locking if possible.

In general, consider these guidelines for preventing record deadlocks when using pessimistic
locks:

• Always lock multiple records in a formal pattern.

• Try to acquire a lock, read, update, and release a lock all within one transaction block.

• If you can not secure multiple locks on records, narrow down the possible records so the
window for locking is smaller.
Chapter 9: Chordiant Persistence Server 199

Data Accessor Overview
In the case of orphan locks, each lock has a configurable life span to prevent locks from remaining
in existence indefinitely. Specifically, each lock has a time stamp, with a resolution in milliseconds.

You can optionally have your application check each lock, at a defined time, to determine whether
it has exceeded its life span. In cases when the life span is exceeded, your application can remove
the lock. Configuring the life span to shorter values reduces the likelihood of record deadlocks
and orphan locks from arising.

Note: Using the ID of a record, you can have any application unlock a record. This is
useful in cases when the process that originally locked the record is no longer
available to perform the unlock operation.

Optimistic and Pessimistic Locking in One Model

While you should not use both optimistic and pessimistic locking strategies in the same data (see
“Caution: Two Locking Strategies on Same Data” on page 202), you can use both locking strategies
in the same model.

Pessimistic locking uses an object’s ID field as a lock field. Since all of the objects in a model are
usually derived from the same base class, you cannot use the inherited ID as the lock field, since it
would change the ID for the base class and all classes inherited from that base class. In this case,
you should create a new GUID field to specify as the lock field for the pessimistic locking sections
of your model. This way, it does not interfere with the sections of the model using optimistic
locking.
200 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Figure 9-10 illustrates an example using two locking strategies: an optimistic strategy is used on
the car data, since it is fairly unlikely that two people will try to update engine or tire information
simultaneously; a pessimistic strategy is used on the driver information, since this information can
change more often and we want to avoid data collisions.

Figure 9-10: Optimistic and Pessimistic Locking in Same Model

Notice that each class inherits an ID attribute from the base class. If you were to change the ID for
the driver by making it a lock field, this would change the ID for the base class as well as for the
vehicle, the car and the car’s engine and tires, making this the lock field for all. This is not
desirable with a mixed-strategy model. The optimistic strategy requires a different lock field, so
this would provide a second lock field. By creating a separate GUID attribute for the Driver class
(called DriverID), setting this ID to a lock field does not interfere with the IDs of the other parts of
the model.
Chapter 9: Chordiant Persistence Server 201

Data Accessor Overview
Caution: Two Locking Strategies on Same Data

You must exercise caution when using both optimistic and pessimistic locks within your
applications since Chordiant Persistence Server does not impose restrictions on the interaction
between optimistic and pessimistic locks. For example, consider the example in Figure 9-11.

Figure 9-11: Caution—Using Both Optimistic and Pessimistic Locking Strategies for Same Data Can Cause Problems

This scenario could occur at four time points (T1 to T4):

In this case, Process P1 will overwrite the changes made by Process P2, which is typically an
unintended consequence.

T1: Process P1 uses retrievePointPessimistic to lock and retrieve record R1
T2: Process P2 uses retrievePoint to retrieve the same record, R1, using an optimistic lock
T3: Process P2 updates record R1 using updatePoint
T4: Process P1 uses updatePointPessimistic to update record R1 and unlock the record.
202 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Optimistic and Pessimistic Locking API

Chordiant Persistence Server offers a distinct Data Access Application Programming Interface
(API) for both optimistic and pessimistic locking. Table 9-3 outlines the API available to both types
of locking.

Note: The UnexpectedMultipleRecordsException exception is thrown when more
than one record is matched for an operation involving a point.

Optimistic Locking Interface

The optimistic locking interface includes:

• updatePointOptimistic—Updates a record based upon a unique value, derived from a
combination of one or more primary keys. The record must have at least one primary key to be
updated. The method uses a lock token to update and change the token while updating the
record.

• updateSetOptimistic—Updates each element based upon a unique value, derived from a
combination of one or more primary keys. The record must have at least one primary key to be
updated.

OPTIMISTIC INTERFACE PESSIMISTIC INTERFACE

• updatePointOptimistic • retrievePointPessimistic

• updateSetOptimistic • retrieveSetPessimistic

• deletePointOptimistic • retrieveRayPessimistic

• deleteSetOptimistic • retrieveSegmentPessimistic

• updatePointPessimistic

• updateSetPessimistic

• deletePointPessimistic

• deleteSetPessimistic

Table 9-3: Optimistic and Pessimistic Locking API

public abstract void updatePointOptimistic(java.lang.Object data)
throws java.lang.Exception

Code 9-3: updatePointOptimistic Method Signature

public abstract void updateSetOptimistic(java.util.Vector data) throws
java.lang.Exception

Code 9-4: updateSetOptimistic Method Signature
Chapter 9: Chordiant Persistence Server 203

Data Accessor Overview
• deletePointOptimistic—Deletes a locked record. Each record must have the unique value
(based on one or more primary keys) and the lock token. When the lock token does not match
the current lock token, the record is not deleted.

• deleteSetOptimistic—Deletes one or more locked records. Each record must have the
primary key value and the lock token. When the lock token does not match the current lock
token, the record is not deleted.

Pessimistic Locking Interface

The pessimistic locking interface includes:

• retrievePointPessimistic—Retrieves a single record matching the supplied data points, and
locks the record. In cases when more than one record is retrieved, an exception is thrown. The
method returns null when no matches are found.

• retrieveSetPessimistic—Retrieves a single record for each supplied business object within
the Vector, and locks each record. In cases when more than one record is retrieved for a
business object, an exception is thrown. The method returns null if no matches are found.

• retrieveRayPessimistic—Retrieves all records matching the supplied data points, and locks
each record. In cases when no data points are supplied, all records are retrieved. The method
returns null if no matches are found.

• retrieveSegmentPessimistic—Retrieves all records matching all supplied data points. In a
case when no data points are supplied, all records are retrieved. The method returns null if no
matches are found.

public abstract void deletePointOptimistic(java.lang.Object data)
throws java.lang.Exception

Code 9-5: deletePointOptimistic Method Signature

public abstract void deleteSetOptimistic(java.util.Vector data) throws
java.lang.Exception

Code 9-6: deleteSetOptimistic Method Signature

public abstract java.lang.Object
retrievePointPessimistic(java.lang.Object data) throws
java.lang.Exception

Code 9-7: retrievePointPessimistic Method Signature

public abstract java.util.Vector
retrieveSetPessimistic(java.util.Vector data) throws
java.lang.Exception

Code 9-8: retrieveSetPessimistic Method Signature

public abstract java.util.Vector
retrieveRayPessimistic(BusinessObjectCriteria data) throws
java.lang.Exception

Code 9-9: retrieveRayPessimistic Method Signature

public abstract java.util.Vector
retrieveSegmentPessimistic(BusinessObjectCriteria firstCriteria,
BusinessObjectCriteria secondCriteria) throws java.lang.Exception

Code 9-10: retrieveSegmentPessimistic Method Signature
204 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
• updatePointPessimistic—Updates a record based on a unique value, derived from a
combination of one or more primary keys. The record must have at least one primary key in
order to be updated. The method unlocks the record after the operation is complete. In cases
when the update or lock fails, and the transactional state is set to true, none of the changes are
committed.

• updateSetPessimistic—Updates each element based on a unique value, derived from a
combination of one or more primary keys. The record must have at least one primary key in
order to be updated.

• deletePointPessimistic—Deletes the matching locked record. The method checks for a lock
and, if it finds one, deletes and unlocks the record. When using the method, you must pass the
primary key (or a unique value based on a combination of multiple primary keys), and the
record must have been previously locked.

• deleteSetPessimistic—Deletes all locked records within a set. The method checks for a lock
and, if it finds one, deletes and unlocks the records. When using the method, you must pass
the primary key (or a unique value based on a combination of multiple primary keys), and the
record must have been previously locked.

If one record within the set fails due to locking issues, none of the records are deleted.
Alternatively, within a localized transaction at the database level, the records before the failure
are deleted, but the others are left untouched.

Examples of Optimistic and Pessimistic Locking

This section provides a series of examples of how to use the optimistic and pessimistic locking
API, and includes the following samples:

• “Using the deletePointOptimistic Method” on page 206

• “Using the updateSetOptimistic Method” on page 206

• “Using the retrieveRayPessimistic Method” on page 207

• “Using the updatePointPessimistic Method” on page 207

public abstract void updatePointPessimistic(java.lang.Object data)
throws java.lang.Exception

Code 9-11: updatePointPessimistic Method Signature

public abstract void updateSetPessimistic(java.util.Vector data) throws
java.lang.Exception

Code 9-12: updateSetPessimistic Method Signature

public abstract void deletePointPessimistic(java.lang.Object data)
throws java.lang.Exception

Code 9-13: deletePointPessimistic Method Signature

public abstract void deleteSetPessimistic(java.util.Vector data) throws
java.lang.Exception

Code 9-14: deleteSetPessimistic Method Signature
Chapter 9: Chordiant Persistence Server 205

Data Accessor Overview
Using the deletePointOptimistic Method

You must use a lock token when using optimistic locking to delete or update records in a table. If
the lock token matches the one in the database, the operation is completed; otherwise an exception
is raised.

Code Sample 9-15 illustrates how to use the deletePointOptimistic method to delete a record from
a table.

Using the updateSetOptimistic Method

This example updates the “rank” of a set of people to gold using the updateSetOptimistic method,
while ensuring that the changes do not conflict with any other updates. Note that the
updateSetOptimistic method throws an UnexpectedMultipleRecordsException if an element was
not updated, or if multiple records were about to be updated but were not.

Code Sample 9-16 illustrates how to use the updateSetOptimistic method to update a set of records
in a table.

Person myPerson = new Person();
myPerson.setId("1234567890");
myPerson.setLockToken("theCurrentLockToken");
DataAccess myDA =

resourceManager.getDataAccessForName(myPerson.CLASS_NAME +"DataAccess")
myDA.deletePointOptimistic(myPerson);

Code 9-15: Using the deletePointOptimistic Method

DataAccess myDA =
resourceManager.getDataAccessForName(myPerson.CLASS_NAME + "DataAccess");

Vector people = new Vector();

Person my1Person = new Person();
my1Person.setId("1234567890");
Person my2Person = new Person();
my2Person.setId("0987654321");
Person my3Person = new Person();
my3Person.setId("6543210987");
people.add(my1Person);
people.add(my2Person);
people.add(my3Person);
//retrieve the current records.
people = myDA.retrieveSet(people)

for (int index = 0; index < people.size(); index++) {
Person aPerson = (Person)people.get(index);
if (aPerson.equalsIgnoreCase("regular") {

aPerson.setRank("gold");
}

}

myDA.updateSetOptimistic(theParameters);

Code 9-16: Using the updateSetOptimistic Method
206 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Using the retrieveRayPessimistic Method

Code Sample 9-17 illustrates retrieving all people from the table that have an alphanumeric last
name greater than “Smith” using the retrieveRayPessimistic method.

Using the updatePointPessimistic Method

Code Sample 9-18 illustrates updating a single person by ID exclusively using the
updatePointPessimistic method.

Order By Interface

Using the Order By interface, you can instruct the Data Accessor to return data sorted by a specific
column in either ascending or descending order. You use the Order By interface with retrieve
operations that return results as a vector, such as retrieveRay or retrieveSegment.

When creating the request to the Data Access object within your business service, you specify the
following information as parameters:

• The business object

• One or two criteria objects, if you need a range returned

PersonCriteria myPerson = new PersonCriteria();
myPerson.setLastName("Smith");
myPerson.setLastNameCriteria(BusinessObjectCriteria.CRITERIA_GREATER);
DataAccess myDA =

resourceManager.getDataAccessForName(myPerson.CLASS_NAME + “DataAccess");

try {
Vector returnPersons = myDA.retrieveRayPessimistic(myPerson);

}
catch(Exception ex) {

// Contend with lock issues
}

Code 9-17: Using the retrieveRayPessimistic Method

Person myPerson = new Person();
myPerson.setId("1234567890");
DataAccess myDA =

resourceManager.getDataAccessForName(myPerson.CLASS_NAME +"DataAccess");

try {
myPerson = myDA.retrievePointPessimistic(myPerson);
myPerson.setLastName("Smith");
myDA.updatePointPessimistic(myPerson);

}
catch(Exception ex) {

// Contend with lock issues
}

Code 9-18: Using the updatePointPessimistic Method
Chapter 9: Chordiant Persistence Server 207

Data Accessor Overview
Within the criteria object, you specify a criteria field for each attribute within the business object.
The Data Accessor uses this information to generate the where clause to perform the data
retrieval. For more information about Business Object Criteria, see “Business Object Criteria” on
page 196.

You can also specify the following additional information when performing the retrieve
operation:

• Whether the sort is to be returned ascending (asc) or descending (desc)

• The order for sorting when multiple columns are requested

The order by interface consists of the following methods:

• retrieveRayOrdered—Performs an ordered ray retrieval, which returns all records matching
a given criteria, ordering the results as specified by the order by criteria.

• retrieveSegmentOrdered—Performs an ordered segment retrieval. The method returns null
if no row is found.

Note that the final argument to the retrieveRayOrdered and retrieveSegmentOrdered methods is a
Vector that enables you to specify multiple fields on which to order. For example, you could
instruct the Data Accessor to return results ordered by last name, first name, and city by adding
these three Business Object Criteria to the Vector passed to the retrieveRayOrdered and
retrieveSegmentOrdered methods.

public retrieveRayOrdered(BusinessObjectCriteria data, java.util.Vector order);

Code 9-19: retrieveRayOrdered Method Signature

public retrieveSegmentOrdered(BusinessObjectCriteria firstCriteria,
BusinessObjectCriteria secondCriteria, java.util.Vector order)

Code 9-20: retrieveSegmentOrdered Method Signature
208 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Code Sample 9-21 illustrates how to retrieve all people with the last name of “Smith,” and ordered
by first name, and then by middle initial.

For more information about the order by interface, including further examples, see the Javadoc for
Chordiant 5 Foundation Server.

java.util.Vector theReturn = new Vector();

PersonCriteria myPerson = new PersonCriteria();
myPerson.setLastName("Smith");
myPerson.setLastNameCriteria(BusinessObjectCriteria.CRITERIA_EQUAL);

PersonCriteria orderOne = new PersonCriteria();
orderOne.setFirstNameCriteria(BusinessObjectCriteria.ORDER_DESCENDING);
PersonCriteria orderTwo = new PersonCriteria();
 orderTwo.setMiddleInitialCriteria(BusinessObjectCriteria.ORDER_DESCENDING);
java.util.Vector orderBy = new java.util.Vector();
orderBy.add(orderOne);
orderBy.add(orderTwo);

try {
theReturn = (java.util.Vector) dataAccess.retrieveRayOrdered(aBOC, orderBy);

}
catch (Exception ex) {

System.out.println(ex);
}
return theReturn;

Code 9-21: Using the orderBy Interface
Chapter 9: Chordiant Persistence Server 209

Data Accessor Overview
Count Interface

You can use the count interface to determine the number of records that exist within a table
matching a specific criteria. The count interface is optimized to count the number of records
without having to retrieve the records themselves.

The count interface includes:

• countPoint—Counts all matching records, returning the number of records matching the
values provided in the business object passed into the method. In cases when no data values
are supplied to the call, the method returns a count of all records.

• countRay—Counts all rows matching the supplied criteria. In cases when no criteria data
point is supplied to the call, the method returns a count of all records.

• countSegment—Counts all records that match all provided data points. In case when no data
points are supplied to the call, the method returns a count of all records. The countSegment
method does not perform checks on the criteria bounds.

Code Sample 9-25 illustrates how to count all persons with a last name “Smith.”

For more information about the count interface, including enhanced examples, refer to the
Javadoc for the data access class.

public abstract java.lang.Object countPoint(java.lang.Object data)
throws java.lang.Exception

Code 9-22: countPoint Method Signature

public abstract java.lang.Object countRay(BusinessObjectCriteria data)
throws java.lang.Exception

Code 9-23: countRay Method Signature

public abstract java.lang.Object countSegment(BusinessObjectCriteria
firstCriteria, BusinessObjectCriteria secondCriteria) throws
java.lang.Exception

Code 9-24: countSegment Method Signature

Integer numberOf = null;
Person myPerson = new Person();
myPerson.setLastName("Smith");

DataAccess myDA = resourceManager.getDataAccessForName(
myPerson.CLASS_NAME + "DataAccess");

numberOf = (Integer) myDA.countPoint(myPerson);

Code 9-25: Using the Count Interface
210 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Performing Transactions

Transactions enable you to commit multiple operations across multiple processes. This section
describes how to use the J2EE transaction interface to perform distributed transactions.

There are two types of transactions that you can perform with the JX architecture:

• Bean Managed Transactions (BMT), which are handled manually within the Java code of the
EJB using the J2EE UserTransaction interface.

When using Bean Managed Transactions with Chordiant 5 Foundation Server, you must not
use nested transactions. Instead, you must join an existing transaction, if available.

• Container Managed Transactions (CMT), which are not handled in the code, but are handled
through the J2EE container.

Container Managed Transactions can be nested within an application server.

For a complete description of the two types of transactions, refer to “Transactions with the JX EJB”
on page 20.

Creating Bean Managed Transactions

To perform container managed transactions (CMTs), refer to “Performing Container Managed
Transactions” on page 215.

The J2EE UserTransaction interface used by Foundation Server comprises these methods:

• getStatus — Enables you to determine the status of the transaction. You can use this status to
determine whether there is a currently active transaction to join, or whether your process must
begin a new transaction.

• begin — Enables you to begin a new transaction.

• commit — Enables you to commit an existing transaction. Only the process that began the
transaction should perform the commit operation.

• rollback — Enables you to rollback a transaction in case of an error. As with the commit
method, only the process that began the transaction should perform a rollback operation.

To use bean managed transactions (BMTs) within your application:

1. Define a user transaction object, and get the current instance of the transaction.

Code Sample 9-26 shows how you can retrieve the current instance of a transaction using the
Java EJB session context.

javax.transaction.UserTransaction myTransaction = null;
myTransaction = getSessionContext().getUserTransaction();

Code 9-26: Retrieving a Transaction Instance
Chapter 9: Chordiant Persistence Server 211

Data Accessor Overview
2. Verify that the current instance of the transaction is valid.

You can do this by checking whether the current transaction is null. If so, you can throw an
exception. Otherwise, you can proceed with the transaction processing.

Code Sample 9-27 shows how you can check whether a transaction is valid.

3. Check if the transaction is already active.

Foundation Server requires applications to join an existing transaction, if available, instead of
beginning a new transaction. If a transaction is already active, you can stop processing the
transaction within your code since the process that began the transaction is always responsible
for completing the transaction.

Code Sample 9-28 shows how you can check whether a transaction is already active.

Note that if a transaction is already active, you can discard the reference to the transaction.
Otherwise, you can begin a new transaction.

4. Perform your database operations, as appropriate.

5. Commit the transaction.

You must only commit transactions that your code began. You can determine whether you are
responsible for committing the transaction by checking your reference to the transaction, as
illustrated in Code Sample 9-29.

if (myTransaction != null) {
// Process the transaction
. . .
}

else {
Exception ex = new BusinessServiceException(

"Unable to obtain javax.transaction.UserTransaction");
LogHelper.error(PACKAGE_NAME, CLASS_NAME,

METHOD_NAME, "Unable to establish a user transaction", ex);
throw ex;

}

Code 9-27: Checking if Transaction is Valid

if (myTransaction.getStatus() == javax.transaction.Status.STATUS_ACTIVE) {
myTransaction = null;

}
else {

myTransaction.begin();
}

Code 9-28: Checking if Transaction is Active

if (myTransaction != null) {
myTransaction.commit();

}

Code 9-29: Committing Transactions
212 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
6. If there is an error, catch the exception and perform a rollback of the transaction.

Your application should only attempt a rollback if it was the process to begin the transaction.
Also, be aware that the rollback itself might fail. Finally, be sure to throw the same exception
before exiting to enable it to propagate through the system properly.

Code Sample 9-30 shows how you can catch an exception and perform a rollback, if
appropriate.

7. Set the configuration files to show that this is a bean managed transaction, as shown in Code
Sample 9-31.

See “Transaction Control Mechanism” on page 119 or “Adding Components through
Configuration” on page 101 for more information.

catch (Throwable e1) {
if (myTransaction != null) {

try {
myTransaction.rollback();

}
catch (Throwable e2) {

// Don't throw e2; throw e1 below.
}

}
throw (Exception) e1;

}

Code 9-30: Catching Exceptions and Performing Transaction Rollbacks

<Section>MyService

<Tag>classname

<Value>com.chordiant.service.MyService</Value>

</Tag>

<Tag>ConnectionName

<Value>EJBBMT</Value>

</Tag>

</Section>

Code 9-31: Configuring as Bean Managed Transaction
Chapter 9: Chordiant Persistence Server 213

Data Accessor Overview
Code Sample 9-32 illustrates a method employing a transaction to perform persistent
operations.

protected CEICMCase startNewCase(String username, String authentication, String description,
String ctiConnectionIdentifier) throws Exception {
final String METHOD_NAME = "startNewCase";
LogHelper.methodEntry(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

CEICMCase newCase = null;
javax.transaction.UserTransaction myTransaction = null;

try {
myTransaction = getSessionContext().getUserTransaction();
if (myTransaction != null) {

if (myTransaction.getStatus() == javax.transaction.Status.STATUS_ACTIVE) {
myTransaction = null;

}
else {

myTransaction.begin();
}

// Create new case to write to database.
newCase = new CEICMCase();
newCase.setCaseNumber(caseNumberGen.getItemNumber());
newCase.setDescription(description);
newCase.setCtiConnectionIdentifier(ctiConnectionIdentifier);
newCase.setLockFlag("1");

// Write new case to DB; call create on DAO.
newCase = (CEICMCase) ((CEICMCaseDataAccess)
myDAResourceManager.getDataAccessForName(

"CEICMCaseDataAccess")).createPoint(newCase);

if (myTransaction != null) {
myTransaction.commit();

}
}
else {

Exception ex = new BusinessServiceException(
"Unable to obtain javax.transaction.UserTransaction");

LogHelper.error(PACKAGE_NAME, CLASS_NAME, METHOD_NAME,
"Unable to establish a user transaction", ex);

throw ex;
}

}
catch (Throwable e1) {

LogHelper.error(PACKAGE_NAME, CLASS_NAME, METHOD_NAME, "Exception occurred", e1);
if (myTransaction != null) {

try {
myTransaction.rollback();

}
catch (Throwable e2) {

LogHelper.error(PACKAGE_NAME, CLASS_NAME, METHOD_NAME,
"Exception occurred trying to rollback a transaction",
e2);

Code 9-32: Performing Persistent Operations in a Transaction
214 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Performing Container Managed Transactions

To perform a container managed transaction (CMT), specify that the service is to run as a
Required CMT within the configuration file where the service is specified. Code Sample 9-33
provides an example of the configuration file code.

From that point on, everything is handled by the container.

See “Transaction Control Mechanism” on page 119 or “Adding Components through
Configuration” on page 101 for more information.

Performing Joins

Using joins enables you to retrieve information from multiple tables by relating unique values that
appear in each of the tables. For example, Code Sample 9-34 shows how you can use SQL against
a relational database to execute a statement to retrieve customer profile information using a
unique, shared identifier.

You can define similar views within Persistence Server by including the parameters for the join
within your object model or within the CMI file.

// Don't throw e2; throw e1 below.
}

}
throw (Exception) e1;

}

LogHelper.methodExit(PACKAGE_NAME, CLASS_NAME, METHOD_NAME);

return newCase;
}

<Section>MyService

<Tag>classname

<Value>com.chordiant.service.MyService</Value>

</Tag>

<Tag>ConnectionName

<Value>EJBCMTRequired</Value>

</Tag>

</Section>

Code 9-33: Specifying CMT within the Configuration File

Select * from customer, profile where customer.cust_id = profile.profile_id;

Code 9-34: Using SQL to Retrieve Customer Profile Information

Code 9-32: Performing Persistent Operations in a Transaction (Continued)
Chapter 9: Chordiant Persistence Server 215

Data Accessor Overview
To define a join within your object model using Chordiant’s UML Extender for Rational Rose:

1. In your object model, open the class specifications.

2. In the Class Specifications window, select the JXP SQL tab.

Figure 9-12: Specifying the Where Prefix within Rational Rose

3. Click in the Value column next to Where Prefix and type your specification for the join. You
must also specify all table names, separated by commas.

4. Click OK.

To define a join within the CMI file:

1. Specify all the table names, separated by commas, as the rdbPhysical name for the containing
class.

2. Define the view by including each of the attributes using table.column as the rdbPhysical
name for each attribute.

3. Include the WherePrefix tag at the class level of the containing class.

Use a full conditional statement, using the table.column notation, to specify the WherePrefix.
For example, you could use this conditional to relate identifiers for the join:

Note: You can use AND elements to create extended where clauses when defining the
join.

<WherePrefix>Customer.customer_id=Profile.profile_id</WherePrefix>
216 Foundation Server Developer’s Guide, release 5.7

Data Accessor Overview
Code Sample 9-35 illustrates how to define a join within the CMI file to retrieve customer profile
information.

You can supply a clause within the WherePrefix tag since the system makes no assumptions
concerning the relationship between tables, attribute names, or pattern of association. You can
also use outer join syntax within the where prefix value.

Note: Traditionally, join operations can result in performance issues. This carries
forward to join operations performed in the context of Chordiant Persistence
Server, since the system does not implement any optimizations or syntax
checking during class generation.

<class>
<name>CustProf</name>
<parentClass>Object</parentClass>
<DSN>testdb1ds</DSN>
<rdbPhysicalName>Customer, Profile</rdbPhysicalName>
<WherePrefix>Customer.customer_id=Profile.profile_id</WherePrefix>
<persistentType>Oracle</persistentType>
<LockStrategy>pessimistic</LockStrategy>

<attribute>
<name>cust_id</name>
<javaType>java.lang.String</javaType>
<multiplicity>1..1</multiplicity>
<rdbPhysicalName>Customer.customer_id</rdbPhysicalName>
<rdbLogicalType>VARCHAR</rdbLogicalType>
<rdbSize>80</rdbSize>
<rdbDigits>0</rdbDigits>
<rdbNotNull>true</rdbNotNull>
<rdbPrimaryKey>true</rdbPrimaryKey>

</attribute>
<attribute>

<name>prof_id</name>
<javaType>java.lang.String</javaType>
<multiplicity>1..1</multiplicity>
<rdbPhysicalName>Profile.profile_id</rdbPhysicalName>
<rdbLogicalType>VARCHAR</rdbLogicalType>
<rdbSize>80</rdbSize>
<rdbDigits>0</rdbDigits>
<rdbNotNull>true</rdbNotNull>
<rdbPrimaryKey>true</rdbPrimaryKey>

</attribute>
</class>

Code 9-35: Defining a Join within the CMI File
Chapter 9: Chordiant Persistence Server 217

Data Accessor Overview
Not every method within the Data Access interface supports join operations. Specifically, only
these methods support joins:

• countPoint

• countRay

• countSegment

• retrievePoint

• retrieveSet

• retrieveRay

• retrieveSegment

• retrieveRayOrdered

• retrieveSegmentOrdered

Methods that do not support joins throw an OperationNotSupported exception if you try to
perform a join operation.

Note: If you do not relate tables with a unique value, multiple rows (a Cartesian
product) will always be returned. Consequently, you cannot use any point
methods in these cases.

CLOB Support

You can use CLOBs, or Character Large Objects, to store large strings in a record. Chordiant
Persistence Server limits VARCHAR fields within a database to a maximum of 256 characters.
CLOBs, on the other hand, enable you to store strings of indefinite size, as supported by the
computing platform and associated drivers.

Note: CLOBs are only supported for Oracle and DB2 databases.

To enable CLOB support:

1. Define the attribute that holds the CLOB data to have a Java type of java.lang.String in the
CMI file.

2. Specify the rdbLogicalType of the attribute to be CLOB.

This activates logic within the XSL stylesheet logic to include the methods required to handle
CLOB fields.

<javaType>java.lang.String</javaType>

<rdbLogicalType>CLOB</rdbLogicalType>
218 Foundation Server Developer’s Guide, release 5.7

The Resource Manager and Persistence
Code Sample 9-36 illustrates a sample attribute definition to support a CLOB.

Code 9-36: Example CLOB Attribute Definition

When storing large character strings, CLOB attributes conform to the following rules:

• The Data Accessor methods updateRay and updateSegment do not update CLOB attribute
values

• The retrieve methods do not use CLOB attributes to determine which records to retrieve

• The delete methods do not use CLOB attributes to determine which records to delete

• You must have a primary key field defined to insert CLOB data

THE RESOURCE MANAGER AND PERSISTENCE

The Resource Manager serves the following roles within the Data Accessor:

• Factory for Data Accessors, Business Objects, Business Object Behavior classes, and Business
Object Criteria classes for services.

• Run-time context for the Data Access objects

Note: The Resource Manager uses the CMI file to build the factory.

The application server typically maintains a connection pool to the underlying data store to enable
applications to gain more efficient access to information. The specific connection pool used is
generally dependent on the application server employed within the environment.

The Resource Manager provides a layer of abstraction enabling Chordiant 5 Foundation Server
applications to gain access to the connection pool without having to know the specifics of the
application server architecture. During system initialization, the Resource Manager acquires a
handle to the connection pool from the application server, thereby enabling it to service requests
for connections from objects within the Chordiant 5 Foundation Server.

<attribute>
<name>Type</name>
<javaType>java.lang.String</javaType>
<multiplicity>1..1</multiplicity>
<rdbPhysicalName>TYPE</rdbPhysicalName>
<rdbLogicalType>CLOB</rdbLogicalType>
<rdbNotNull>true</rdbNotNull>
<rdbPrimaryKey>false</rdbPrimaryKey>

</attribute>
Chapter 9: Chordiant Persistence Server 219

The Resource Manager and Persistence
An application service can then use the Resource Manager to get an instantiated Data Access
object, as illustrated in Figure 9-13. The numbered steps are described after the figure.

Figure 9-13: Resource Manager Overview

1. The application service requests a Data Accessor from the Resource Manager to perform a
database operation.

The Resource Manager instantiates a Data Access object. Note that the application service
executes within an EJB.

2. The service uses the Data Accessor to perform the database operation.

3. The Data Accessor requests a connection from the Resource Manager.

4. The Resource Manager uses its handle to the connection pool, and requests a connection from
the application server.

5. The Data Accessor performs the requested operation.

After completing the database operation, the Data Accessor releases the connection to the
database.
220 Foundation Server Developer’s Guide, release 5.7

The Resource Manager and Persistence
Figure 9-14 illustrates the involvement of the Resource Manager in the execution flow of an
application performing a database operation.

Figure 9-14: Resource Manager Execution Flow

These numbered steps describe the execution flow of an application performing a database
operation, such as create, using the Resource Manager:

1. The application issues a call to the client agent, passing the Business Object.

2. The client agent calls the service.

3. The service accepts the Business Object, and attempts to locate the Data Accessor associated
with the Business Object.

4. The service gets a Data Accessor for the Business Object from the Resource Manager.

5. The Resource Manager creates an instance of the Data Access object for the Business Object,
and performs setup operations.

6. The service uses the Data Access object to perform the work it wants to complete.

For example, the service might issue a createPoint call directly against the Data Accessor.

7. The Data Accessor gets a database connection from the connection pool.

8. The Data Accessor performs the requested operations.

The Data Accessor returns a GUID, if appropriate.
Chapter 9: Chordiant Persistence Server 221

The Lock Manager
9. The routines pass results back to the calling functions.

The Resource Manager uses the package and class names within the CMI file to establish the full
path name for all data access objects, thereby enabling the Resource Manager to instantiate the
Data Accessor for a calling service.

THE LOCK MANAGER

The Lock Manager is a service that provides object locking, unlocking, and lock status
functionality for components within the Chordiant 5 Foundation Server. The Lock Manager locks
objects using the object name and unique object identifier, such as the GUID. You can use the Lock
Manager to gain an exclusive lock on an entity, such as a row in a database table, a screen, or other
objects within the system.

You could use the Lock Manager to get an exclusive lock on a customer record, for example,
thereby enforcing a business rule that enables only a single person to update information about a
particular customer at any given time. Alternatively, you could use the Lock Manager to lock a
maintenance screen, preventing multiple users from attempting to perform the same maintenance
operation at the same time.

The Lock Manager is independent of any other component, enabling you to use the client agent of
the Lock Manager from any component. The Data Accessor uses the Lock Manager, for example,
to perform pessimistic locking operations. Optimistic locking, on the other hand, does not use the
Lock Manager. Instead, optimistic locking uses a lock token and a lock column in the table.

Note: With pessimistic locking, all locking state information is stored in a database
instead of being memory resident. This enables distributed locking without
raising issues related to threading or resource contention. However, the
application must properly handle orphaned lock records in a database caused by
application or system exception.
222 Foundation Server Developer’s Guide, release 5.7

The Lock Manager
Figure 9-15 provides an overview of the Lock Manager, and its relationship to other components
with the system. The Lock Manager is typically used in the following ways:

A—Applications can lock and unlock objects directly, using the client interface to the Lock
Manager, as described in “Client Interface to the Lock Manager” on page 224.

B—The Data Accessor can lock and unlock objects when applications perform pessimistic
locking, using methods such as retrievePointPessimistic.

Figure 9-15: Overview of the Lock Manager

Note: The Lock Manager does not rely on the underlying database or data store
capabilities to implement the locking implementation. This means that other
processes, operating independent of the Lock Manager and accessing objects
directly, can gain access to objects you have locked using the Lock Manager.

Configuring the Lock Manager

Like other components within Chordiant Foundation Server, the LockService is configured
through an XML file, namely lock.xml. In addition to defining the location of the LockService,
lock.xml enables you to define a lock timeout period, in milliseconds. By default, the timeout
value is set to zero, which essentially disables the timeout mechanism. If you set the timeout value
to be any integer greater than zero, locks will expire after that amount of time passes.
Chapter 9: Chordiant Persistence Server 223

The Lock Manager
Client Interface to the Lock Manager

The system provides a client interface to the Lock Manager, enabling applications to perform basic
functions such as the locking and unlocking objects, as well as checking the lock status of a specific
object.

The client interface to the Lock Manager consists of the following methods:

• lock—Locks a single object using the object name and object GUID. An object can be locked if
it has not already been locked or if its lock has already expired. The method returns without
exception if the lock is successful, otherwise a LockUnavailableException is thrown in cases
when the record is unable to be locked. There is no lock queueing for wait periods.

• unlock—Unlocks a single object that was previously locked using the lock method. The
method throws an exception in cases when the requested business object name and GUID are
currently not locked.

The Lock Manager uses BMT when performing a lock operation. If the Lock Manager is used
within a CMT operation, the application must do an unlock if the CMT operation fails. There
is no automatic unlock, as it is in a separate transaction context from the CMT operation.

There is also a version of the unlock method that enables you to remove all locks older than a
supplied age.

• check—Checks whether an object is currently locked. Returns True if the object is locked and
the lock has not expired.

Note: The Lock Service runs inside of an EJB. The Data Accessor uses the Lock Service
by issuing calls to the Lock Service client agent.

public void lock(java.lang.String userName, java.lang.String authenticationToken,
com.chordiant.lock.classes.LockMultipleContainer data)

public void lock(java.lang.String userName, java.lang.String authenticationToken,
java.lang.String BusinessObjectName, java.lang.String GUID)

Code 9-37: lock Method Signatures

public void unlock(java.lang.String userName, java.lang.String authenticationToken,
com.chordiant.lock.classes.LockMultipleContainer data)

public void unlock(java.lang.String userName, java.lang.String authenticationToken,
java.lang.String BusinessObjectName, java.lang.String GUID)

Code 9-38: unlock Method Signatures

public void unlock(java.lang.String userName, java.lang.String authenticationToken,
long age)

Code 9-39: unlock Method Signature for long age

public boolean check(java.lang.String userName, java.lang.String authenticationToken,
java.lang.String BusinessObjectName, java.lang.String GUID)

Code 9-40: check Method Signature
224 Foundation Server Developer’s Guide, release 5.7

Data Type Support
DATA TYPE SUPPOR T

In mapping the business data to specifics within the database environment, the Database
Specialist must consider the specific Java data types being mapped to columns that appear within
tables in the database.

Table 9-4 outlines the mapping from the Java data types to the types used within the respective
databases.

Note: You can only perform a mapping between the listed Java data types; no other data
types are supported.

These are supported data types for persistence data type mapping. For supported
communication data types, see “Supported Data Types” on page 141.

JAVA DATA TYPE DATABASE TYPE

• java.lang.BigDecimal • numeric(X,2)

• java.lang.Boolean • char

• java.lang.Double • numeric(X,2)

• java.lang.Integer • numeric

• java.lang.Long • numeric

• java.lang.Object • File system file of object,
converted to an XML string

• java.lang.String
(maximum 256 characters)

• Varchar

• java.lang.String
(more than 256 characters)

• CLOB (Oracle and DB2 only)

• java.util.Date • Timestamp (DB2)
• Datetime (Oracle)

Table 9-4: Mapping Java Data Types to Database Types
Chapter 9: Chordiant Persistence Server 225

Data Type Support
Understanding Object to Fi le Support

Chordiant 5 Foundation Server serializes objects to an XML string, and stores the resulting string
in a file using the primary key (typically the GUID) of the object as the file name, as illustrated in
Figure 9-16.

Figure 9-16: Mapping Objects to XML Strings
226 Foundation Server Developer’s Guide, release 5.7

Data Type Support
The system constructs the path leading to the file using these elements:

• object_directory—The root of the object directory, defined using the OBJECT_DIRECTORY
parameter in component configuration file and usually in the master.dtd file. If you are
working in a clustered environment, the object_directory should point to a shared disk. For
example, Code Sample 9-41 shows the Generic Service’s entry in its configuration file to
define the root directory for the path.

Documents are not actually stored in the database. This enables more performant queries.

• object_rdbPhysicalName—The rdbPhysicalName of the object, as specified in the CMI file as
class-level metadata. For example, you could use Code Sample 9-42 in the CMI file to define
the rdbPhysicalName for the object in Figure 9-16.

• attribute_name—The rdbPhysicalName of the attribute (data member) in the object, as
specified in the CMI file as attribute-level metadata. For example, you could use Code
Sample 9-43 in the CMI file to define the rdbPhysicalName for the attribute in Figure 9-16 on
page 226.

<Section>com.chordiant.bc.services.GenericService
...

<Tag>ResourceName
<Value>OBJECT_DIRECTORY</Value>

</Tag>
</Section>
...
<Section>com.chordiant.bc.services.GenericService.OBJECT_DIRECTORY

<Tag>ResourceType
<Value>STRING</Value>

</Tag>
<Tag>ResourceValue

<Value>&JXB_BINARY_DATA_STORAGE_ROOT_DIRECTORY;/bindata</Value>
</Tag>

</Section>

Code 9-41: Generic Service Configuration File Showing Root Directory

<class>
<name>Customer</name>
<parentClass>Object</parentClass>
<DSN>customerdb1ds</DSN>
<rdbPhysicalName>customer</rdbPhysicalName>
<persistentType>Oracle</persistentType>
<LockStrategy>pessimistic</LockStrategy>
...

</class>

Code 9-42: Defining the rdbPhysicalName for the Object in the CMI File

<attribute>
<name>Type</name>
<javaType>java.lang.String</javaType>
<multiplicity>1..1</multiplicity>
<rdbPhysicalName>TYPE</rdbPhysicalName>
...

</attribute>

Code 9-43: Defining the rdbPhysicalName for the Attribute in the CMI File
Chapter 9: Chordiant Persistence Server 227

Configuring WebSphere MQ Persistence
Note: Application developers do not need to know about the mapping of Java data
types to database entities. Instead, the application developer simply codes to the
Java interface generated by the Database Specialist, as described in “Persistence
Server Process Flow” on page 185.

CONFIGURING WEBSPHERE MQ PERSISTENCE

Before using data available on WebSphere MQ data stores, you must configure a series of
parameters in the jxpmq.xml configuration file to define the interaction between Chordiant 5
Foundation Server and WebSphere MQ.

This section describes parameters related to the following aspects of configuring WebSphere MQ
persistence:

• Connection Pool

• Connection

• Runtime

Table 9-5 outlines the WebSphere MQ Connection Pool parameters. You should include the
Connection Pool parameters in the MQConnectionPoolConfiguration section of the configuration
file.

Code Sample 9-44 illustrates a sample section of the configuration file containing the MQ
Connection Pool parameters.

Code 9-44: Sample WebSphere MQ Connection Pool Configuration

PARAMETER DESCRIPTION

RESOURCE_TAG_FOR_
DESTROY_CONNECTIONS_
TIMEOUT

Time in milliseconds until the Connection Pool
destroys unused connections.

RESOURCE_TAG_FOR_MAX_
UNUSED_CONNECTIONS

Maximum number of unused connections.

Table 9-5: WebSphere MQ Connection Pool Parameters

<Section>
MQConnectionPoolConfiguration
<Tag>

RESOURCE_TAG_FOR_DESTROY_CONNECTIONS_TIMEOUT
<Value>3600000</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MAX_UNUSED_CONNECTIONS
<Value>10</Value>

</Tag>
</Section>
228 Foundation Server Developer’s Guide, release 5.7

Configuring WebSphere MQ Persistence
Table 9-6 outlines the WebSphere MQ Connection parameters. You should include the Connection
parameters in a user-defined section specified by the DSN parameter in the CMI file.

Table 9-7 outlines the WebSphere MQ Runtime parameters. You should include the Runtime
parameters in a user-defined section specified by the DSN parameter in the CMI file.

PARAMETER DESCRIPTION

RESOURCE_TAG_FOR_MQ_
QMGR

Name of the Queue Manager to which to
connect.

RESOURCE_TAG_FOR_MQ_
PUTQ

Name of the Put Queue to open and to which to
send requests.

RESOURCE_TAG_FOR_MQ_
PUTQMGR

(Optional) Name of the remote Queue Manager.

RESOURCE_TAG_FOR_MQ_
GETQ

Name of the Model Queue to use to generate a
Dynamic Queue.

RESOURCE_TAG_FOR_MQ_
CONNECTIONTYPE

CLIENT requires a host name and a channel.
The valid values are CLIENT or SERVER.

RESOURCE_TAG_FOR_MQ_
HOSTNAME

Host name where the WebSphere MQ Queue
Manager is running.

RESOURCE_TAG_FOR_MQ_
CHANNEL

Name of the Client/Server channel to connect
as a client.

RESOURCE_TAG_FOR_MQ_
PORT

A positive integer port number to which
WebSphere MQ is listening. Zero (0) is the
default setting for this parameter. You should
use this parameter if MQ is using a port number
other than the default port number of 1414.

RESOURCE_TAG_FOR_MQ_
USERID

The userID used to connect to WebSphere MQ.

RESOURCE_TAG_FOR_MQ_
PASSWORD

The password used to connect to WebSphere
MQ.

Table 9-6: WebSphere MQ Connection Parameters

PARAMETER DESCRIPTION

RESOURCE_TAG_FOR_MQ_
WAITINTERVAL

Number of milliseconds MQ waits for a
response.

RESOURCE_TAG_FOR_MQ_
EXCEPTION_ALLOWED

Whether the Data Accessor handles data
exceptions for each attribute. The valid values
for this parameter are TRUE or FALSE.

Table 9-7: WebSphere MQ Runtime Parameters
Chapter 9: Chordiant Persistence Server 229

Configuring WebSphere MQ Persistence
Code Sample 9-45 illustrates a sample section of the configuration file containing the WebSphere
MQ Connection and Runtime parameters.

<Section>
mq_test_connection
<Tag>

RESOURCE_TAG_FOR_MQ_QMGR
<Value>MQJH</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_PUTQ
<Value>MQTHINGER</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_PUTQMGR
<Value>MQJH</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_GETQ
<Value>MQTHINGER.REPLY</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_WAITINTERVAL
<Value>300000</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_CHANNEL
<Value>JH1</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_HOSTNAME
<Value>localhost</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_PORT
<Value>0</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_USERID
<Value>None</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_PASSWORD
<Value>None</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_CONNECTIONTYPE
<Value>SERVER</Value>

</Tag>
<Tag>

RESOURCE_TAG_FOR_MQ_EXCEPTION_ALLOWED
<Value>TRUE</Value>

</Tag>
</Section>

Code 9-45: Sample WebSphere MQ Connection and Runtime Parameters in Configuration File
230 Foundation Server Developer’s Guide, release 5.7

Example of Using Persistence Server
EXAMPLE OF USING PERSISTENCE SER VER

This section provides instructions for adding persistence to your service.

To add persistence to your application:

1. Define the service that will be performing the persistence operations. Follow the instructions
in “Building a Service” on page 112 or create one using the UML Extender for Rational Rose.
For details, refer to the Chordiant 5 Foundation Server Application Components Developer’s Guide.

2. Be sure that you import any persistence business services that you want to use for your
project. These will not necessarily be in the com.chordiant package.

3. In your service, create a new attribute to reference the Resource Manager, implementing the
BusinessObjectResourceInterface. Initialize the value to null.

For background information on the Resource Manager, refer to “Chordiant Resource
Manager” on page 170.

import com.choriant.lock.client.LockClientAgent;
import com.choriant.persistence.businesscriteria.BusinessObjectCriteria;
import com.choriant.persistence.DataAccess;

import.java.sql.*;
import.java.util.Vector;
import java.sql.DataSource;

import com.choriant.service.*;

protected BusinessObjectResourceInterface myDAResourceManager = null;
Chapter 9: Chordiant Persistence Server 231

Example of Using Persistence Server
4. Instantiate the Resource Manager when your service starts up. The commonSetup method can
be used within a service to set up the Resource Manager. Here is the commonSetup method
for the BusinessObjectResourceManager.

The commonSetup method performs these tasks:

— Calls putResource to add this service’s name and authentication to the Resource
Manager so it can be used to call other client agents.

— Gets an instance of lockClientAgent, for use in obtaining client agents.

— If the package name is not null, gets the configuration information for this service
from the relevant configuration XML files.

public BusinessObjectResourceInterface commonSetup(
String userName, String authentication, String packageName,
String sectionName, Service service)

throws Exception
{

final String METHOD_NAME = "commonSetup";
try
{

// Give the login name and token of this service to the resource mgr.
// so the DA can call the lock manager as a proxy to this service.

// Login name and authentication are used when the resource manager or
// the data access objects need to call a client agent. (LockClientAgent,
// SeedClientAgent, etc).
// All operations done within the scope of a service use the service's
// login name and authentication.

putResource(TAG_USER_NAME, userName);

putResource(TAG_SECURITY_TOKEN, authentication);

// Get and place a lock client agent on the resource manager.
// This is used during pessimistic locking.
putResource("LockClientAgent", (LockClientAgent)

ClientAgentHelper.getClientAgent(LockClientAgent.CLASS_NAME));

if (packageName != null)
{

if (! xmlConfigSectionDone)
{

getConfiguration(packageName, sectionName);
}
setup(service);

setUpdateNull(true);
}

}
catch (Throwable e1)
{

LogHelper.error(PACKAGE_NAME, CLASS_NAME, METHOD_NAME, "Exception
occurred", e1);

throw (Exception) e1;

}
return this;

}

232 Foundation Server Developer’s Guide, release 5.7

Chordiant Persistence Server and XSL Stylesheets
— Calls setup(service) to get a J2EE session context for this service and set up the object
lookup table.

— Sets setUpdateNull to true, making the service accept null values for database update.
This is required for Chordiant-provided business services. You can set this value to be
false, which tells the Data Accessor to bypass null attributes during a database update
operation.

5. When you need to access a data store, from your service, call the Resource Manager to get the
Data Accessor, Business Object, and Business Object Criteria classes.

You must get the business object by using the class name (but not the package name) of the
object.

You can get the Data Accessor or Business Object Criteria classes forName.

6. Once you have the Data Accessor, Business Object, and Business Object Criteria classes, use
the methods on the Data Accessor to access the data store. The methods you can use are
described in “Data Access Methods” on page 192.

CHORDIANT PERSISTENCE SERVER AND XSL
STYLESHEETS

Chordiant Persistence Server offers support for these data accessors:

• SQL (for both Oracle and DB2)

• WebSphere MQ (for both text and XML messages)

You can customize the data accessors using XSL stylesheets. Chordiant supplies a set of
stylesheets that you can copy and customize to suit your requirements. This section offers tips for
using the XSL stylesheets. For more information on XSL, consult a resource dedicated to this topic.

PartyRelationship nullPartyRelationship = (PartyRelationship)
myResourceManager.getBusinessObjectForName(NullPartyRelationship.CLASS_NAME);

Code 9-46: Using the getBusinessObjectForName Method

Vector allCommonObjectRoles = (Vector) myResourceManager.getDataAccessForName(
PartyRoleTableDataAccess.CLASS_NAME).retrieveRay(prtBOC);

Code 9-47: Using the getBusinessObjectForName Method

PartyRelationshipViewTableCriteria)
myResourceManager.getBusinessObjectCriteriaForName(
PartyRelationshipViewTableCriteria.CLASS_NAME);

Code 9-48: Using the getBusinessObjectCriteriaForName Method
Chapter 9: Chordiant Persistence Server 233

Chordiant Persistence Server and XSL Stylesheets
XSL Header

All XSL files start with a header, as illustrated in Code Sample 9-49.

XSL Options and Begin Statement

The start of every XSL file includes the information shown in Code Sample 9-50.

The <xsl:template match=> tag can specify an arbitrary value. Chordiant uses the value root as the
root tag within the XML document (CMI). Since this will generate Java code, omit-xml-declaration
is set to yes to prevent the output from having an XML header.

Value-of Tag

The value-of tag retrieves the value of the DSN field.

Sort

The sort tag orders the selected data set from table specified using rdbPhysicalName. The
following illustrates how to specify sorting in descending order.

I f - Then

You can use the if-then tag to verify that rdbPhysicalName has a value.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

Code 9-49: XSL File Header

<xsl:output method="text" indent="yes" omit-xml-declaration="yes"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN" />
<xsl:template match="root">
</xsl:template>
</xsl:stylesheet>

Code 9-50: Standard XSL File Starting Information

<xsl:value-of select="DSN"/>

<xsl:sort select="rdbPhysicalName" order="descending"/>

<xsl:if test="rdbPhysicalName!=''">
</xsl:if>
234 Foundation Server Developer’s Guide, release 5.7

Chordiant Persistence Server and XSL Stylesheets
Legal Filter Operators

Table 9-8 lists legal filter operators.

For

The for tag enables you to specifying looping operations. Code Sample 9-51 loops through all
attribute nodes with multiplicity equal to 1..1.

Choose (Case/Switch)

The choose tag enables you to encode a logical switch. In Code Sample 9-52, the String is
normalized when the value is a String.

Hold Value - “element_name”

Code Sample 9-53 illustrates how to declare the local attribute stylesheetversion with a value of
Style Sheet Version: common 11152001:16:160. Each declaration creates a new local value
within the given scope.

FILTER OPERATOR DESCRIPTION

= equal

=! not equal

<& less than

>& greater than

Table 9-8: Legal Filter Operators

<xsl:for-each select="attribute[multiplicity='1..1']">

</xsl:for-each>

Code 9-51: Using the For Tag

<xsl:choose>
<xsl:when test="javaType='java.lang.String'">

firstStatementBuffer.append(normalize(data.get<xsl:value-of
select="name"/>()));

</xsl:when>
<xsl:otherwise>

firstStatementBuffer.append(data.get<xsl:value-of
select="name"/>());

</xsl:otherwise>
</xsl:choose>

Code 9-52: Using the Choose Tag

<xsl:variable name="stylesheetversion">* Style Sheet Version: common
11152001:16:160</xsl:variable>

Code 9-53: Using the Hold Value Tag
Chapter 9: Chordiant Persistence Server 235

Chordiant Persistence Server and XSL Stylesheets
XSL Limitation

Be aware that unlike many programming systems, XSL does not keep variables outside of the
local scope. This means that when a named variable is defined at a high level within the code,
even though the value of that variable is changed within a code block (such as an if block or a for
block), once you exit the block, the variable again assumes the value defined at the higher level.

This eliminates the possibility of using variables as counters or sentinel flags.

Code Sample 9-54 illustrates this point.

The following illustrates how to place the value of the local attribute stylesheetversion.

Trim Value

You can trim a string to a fixed number of characters. The following statement trims the selected
value to its first 27 characters.

class example {
protected String myVariable = "blue";

public void testFunction(){
//Variable change occurs here
String myVariable = "green";
//For the rest of this function, myVariable equals "green",
//when you get to any other function, even if it is called from
//this function, the variable "myVariable" will equal "blue",
//not "green";

if (true)
{

myVariable = "purple";
}

//myVariable == "green" -- this is different than other
//languages, where the "purple" would have persisted

} //end function testFunction

}

Code 9-54: Example of XSL Limitation

<xsl:value-of select="$stylesheetversion"/>

<xsl:value-of select="substring(name,1,27)"/>
236 Foundation Server Developer’s Guide, release 5.7

Chordiant Persistence Server and XSL Stylesheets
Call Procedure

You can perform procedure calls using XSL. Code Sample 9-55 illustrates how to call the
CommonBlock template by name, passing in as parameters the local variables class_name and
table_name.

Template Header

Code Sample 9-56 illustrates how to declare a CommonBlock template with two parameters. The
template uses the value of the class_name parameter, which is the same as the use of a local
variable (see “Hold Value - “element_name”” on page 235).

Import Statement

Code Sample 9-57 illustrates how to import the ResultSetToObject.xsl stylesheet:

Escape from XSL Grammar

You can add information that is not specified in the XSL grammar. When you do, the information
inside these tags are decoded as XSL. This enables you to output XSL code tags without the tags
being interpreted.

This also enables you to add a semicolon to the end of a line of Java code without XSL introducing
a carriage return, as illustrated in Code Sample 9-58.

<xsl:call-template name="CommonBlock">
<xsl:with-param name="class_name" select="$class_name">
</xsl:with-param>
<xsl:with-param name="table_name" select="$table_name">
</xsl:with-param>

</xsl:call-template>

Code 9-55: Using the CommonBlock Template

<xsl:template name="CommonBlock">
<xsl:param name="class_name"/>
<xsl:param name="table_name"/>
.
.
.

<xsl:value-of select="$class_name"/>
.
.
.

</xsl:template>

Code 9-56: Declaring a CommonBlock Template

<xsl:import
href="file:///E:/Chordiant/DevEnv/jxp/da/oracle/ResultSetToObject.xsl"/>

Code 9-57: Using the Import Statement

<xsl:text/>;<xsl:text/>

Code 9-58: Adding Non-XSL Information
Chapter 9: Chordiant Persistence Server 237

Chordiant Persistence Server and XSL Stylesheets
Additionally, you can include greater than and less than symbols in your intended Java code by
using the following combinations:

• < <

• > >

Failing to do so will result in an XSL error.
238 Foundation Server Developer’s Guide, release 5.7

Chapter 10
Chordiant Event Server
The Chordiant Event Server provides a rich set of asynchronous XML messaging capabilities
leveraging the industry-standard Java Messaging Service (JMS), enabling configurable inbound
access to all Chordiant services. Additionally, outbound messages generated by Chordiant
services can be handled and passed to JMS.

The Foundation Server asynchronous messaging capabilities enable you to create loosely-coupled
distributed applications and services.

If you will be using the Chordiant Event Server, you must configure it during installation of
Chordiant 5 Foundation Server. Refer to the Chordiant 5 Tools Platform Installation and Configuration
Guide for details. The Message Driven Beans (MDB) used for inbound message processing are
configured through the Application Packaging Manager. Refer to the Chordiant 5 Applications
Deployment Guide for details.

EVENT SERVER COMPONENTS

The Chordiant Event Server includes the following components:

• OutboundMessageHelper — Enables messages to be directed to specific JMS queues and
topics based on calls to specific Chordiant service calls. Depending upon calls to specific
Chordiant services, the OutboundMessageHelper listens for specific Chordiant service
requests or responses, and then maps the requests and responses to JMS topics or queues
based on filters, implemented as MessageDispatcher objects. The OutboundMessageHelper
maintains a list of the available MessageDispatcher objects.

• MessageDispatcher — Sends specific Chordiant service requests or responses to JMS topics or
queues. Each MessageDispatcher object must implement the MessageDispatcher interface.
Chordiant supplies a reference implementation, the XMLMessageDispatcher. The
XMLMessageDispatcher can be extended to transform the data or direct it to other
destinations based on your own logic and behavior.

After you create a new MessageDispatcher class, you can configure the
OutboundMessageHelper to load the customized MessageDispatcher class.

• Message Driven Bean — Enables inbound messages from JMS to be directed to specific
Chordiant JX services. MDBs act as JMS message listeners. Based on its configuration, an MDB
gets messages from a queue or topic and maps the messages to Chordiant services.
239

Event Server Components
• MessageFilter — Provides MessageHandlers to the Message Driven Bean. The MessageFilter
looks in the configuration file to see which MessageHandler is appropriate for the received
message. Chordiant provides a DefaultMessageFilter, but you can also extend it to suit your
needs. Customized MessageFilters must implement the IMessageFilter interface.

• MessageHandler — Sends inbound requests to specific Chordiant services, handling
responses as appropriate. Each MessageHandler object must implement the IMessageHandler
interface. Chordiant supplies two default implementations:

— TextMessageHandler: Handles an XML string as a text message. This string includes
user name, password, and service call information. This is the parent class for
XMLMessageHandler.

— XMLMessageHandler: Handles Chordiant’s payload data. For details on payload
data, refer to “Passing Payload with PayloadData” on page 140.

You can use the XMLMessageHandler as is or copy and modify it to implement custom
behavior. You can choose to have handlers for different types of messages, including
ByteMessage, StreamMessage, ObjectMessage, and MapMessage.
240 Foundation Server Developer’s Guide, release 5.7

Event Server Components
Figure 10-1 illustrates the architecture and component interactions of the Foundation Server
Asynchronous Messaging Architecture.

Figure 10-1: Foundation Server Asynchronous Messaging Architecture

The OutboundMessageHelper class is implemented as a CustomObject, and is located in the
com.chordiant.service.message package. For more information about CustomObjects, refer to
“CustomObjects and the CustomObjectHelper” on page 176. The XMLMessageDispatcher class is
located in the com.chordiant.service.message.xml package.
Chapter 10: Chordiant Event Server 241

Event Server Components
For inbound messages, Chordiant uses a Message Driven Bean. The IMessageFilter and
IMessageHandler classes are located in the com.chordiant.jxe package.

Understanding the Execution Flow

This section describes the following execution flows:

• “Outbound Messages” on page 242

• “Inbound Messages” on page 244

Outbound Messages

Figure 10-2 illustrates the outbound messaging reference implementation.

Figure 10-2: Outbound XML Messaging Reference Implementation Execution Flow

Here is the execution flow for outbound asynchronous messages:

1. During start up, Foundation Server loads a single instance of the OutboundMessageHelper, as
defined in the configuration file.

You can configure the OutboundMessageHelper to listen for requests to, and responses from,
specific Chordiant business services.

In a clustered application server environment, there is a single OutboundMessageHelper for
each application server in the cluster.
242 Foundation Server Developer’s Guide, release 5.7

Event Server Components
2. The OutboundMessageHelper loads an instance of each unique MessageDispatcher defined
in the configuration.

In cases when there are several message filters referencing the same MessageDispatcher, the
OutboundMessageHelper loads only a single copy of the MessageDispatcher.

3. A Chordiant business service is called by an application or a peer service.

4. In cases when a request filter is configured for the business service, the
OutboundMessageHelper calls the preProcess method before the business service is invoked.

5. The preProcess method invokes the dispatchMessage method in the MessageDispatcher
class. You can customize the implementation of the dispatchMessage method. Then you can
reference the customized class as part of the configuration information.

6. The MessageDispatcher can format the message and send it to the appropriate JMS
destination or it can implement whatever custom logic is appropriate to handle the request.

The MessageDispatcher transforms the XML document into an XML string and send this
string to JMS using the configuration data (such as the initial context, topic and queue
specifiers, and connection information). You can customize a MessageDispatcher to handle
messages other than XML.

7. The business service is invoked.

8. In cases when a response filter is configured for the business service, the
OutboundMessageHelper calls the postProcess method after the business service completes.

9. The postProcess method invokes the dispatchMessage method in the MessageDispatcher.

10. The MessageDispatcher can format the message and send it to the appropriate JMS
destination or it can implement whatever custom logic is appropriate to handle the request.

11. The response is returned to the application or peer service.
Chapter 10: Chordiant Event Server 243

Event Server Components
Inbound Messages

Figure 10-3 illustrates the inbound messaging reference implementation.

Note: The Foundation Server application server must be completely started up before
the Event Server functionality is available.

Figure 10-3: Inbound XML Messaging Reference Implementation Execution Flow

The execution flow for inbound XML asynchronous messages is:

1. When the Foundation Server application server has completely started up, a Message Driven
Bean (MDB) is loaded. This MDB listens for messages from JMS. When a message arrives, the
EJB container automatically routes the message to the MDB’s onMessage method.

2. When the onMessage method receives a request, the MDB calls the JXEHelper to obtain a
MessageFilter.

3. The MDB then calls the MessageFilter.getMessageHandler to obtain a MessageHandler for
this request. The MessageFilter looks to the JXE_MessageFilter.xml configuration file to
find which MessageHandler to provide to handle this specific message. If no match is found
in the configuration file, the MessageFilter creates an instance of the default message handler,
XMLMessageHandler.

4. The onMessage method on the MDB calls the HandleMessage method on the
MessageHandler.
244 Foundation Server Developer’s Guide, release 5.7

Event Server Components
5. The handleMessage method calls the XML Client Agent to do the business logic.

6. The XML Client Agent calls the appropriate business service to do its business logic.

7. The service performs its work and returns its response to the XML Client Agent.

8. The XML Client Agent passes the response to the MessageHandler.

9. If required, you can develop a custom MessageHandler to return the response from the XML
Client Agent to a JMS destination specified in the request message.

When the application is shut down, the application server shuts down the MDBs. The Event
Server finishes processing the messages already in process and commits the session. Any
transactions that cannot be completed are rolled back to maintain database integrity.

Security and Inbound Messages

Chordiant services require a username and authentication token before they can do their work. If
you do not want to send both parameters in a message through the Event Server, you can send the
username and password. In this case, the TextMessageHandler can contact the security service
and obtain an authentication token and authenticate the caller with the Chordiant system.

Alternatively, you can specify the username and password from a configuration file. As in the
previous scenario, the TextMessageHandler can contact the security service and obtain an
authentication token. Be aware that this scenario is not as secure, since the sensitive information is
located in a configuration file. This functionality is not provided, but you can customize the Event
Server to provide this functionality if you require it.

Errors and Inbound Messages

If, for some reason, the MessageHandler is not able to process a message, it will throw an
exception back to the MDB. The message will be removed from the incoming queue and sent to a
message error queue. The MDB will then continue with the next incoming message. If there is a
problem routing the message to the error queue, the Event Server will log a critical error and will
shut down the current session.

Error queue functionality is provided by the application server. Configure this functionality
through WebLogic or WebSphere, according to their documentation.
Chapter 10: Chordiant Event Server 245

Directing Outbound Messages to Queues and Topics
DIRECTING OUTBOUND MESSAG ES TO QUEUES AND
TOPICS

This section describes how to configure the OutboundMessageHelper and to create and configure
custom Message Dispatchers to direct XML messages to JMS queues and topics within the
Foundation Server environment.

To direct messages to queues and topics in JMS:

1. Configure the loading of the OutboundMessageHelper.

You must include an entry within the JXE_CustomObjects.xml configuration file to load
the OutboundMessageHelper, as shown in Code Sample 10-1.

2. Implement a custom Message Dispatcher, if required.

The Message Dispatcher interface defines the outbound JMS Message Dispatchers. Classes
implementing the interface are used and managed in a pool by the OutboundMessageHelper.

Message Dispatchers manipulate XML request and response messages sent to, and between,
Chordiant services. The XML messages can be transformed and routed to arbitrary
destinations using JMS or other means. The OutboundMessageHelper maintains a list of all
Message Dispatchers used for filtering Chordiant service requests and responses.

To implement a custom Message Dispatcher:

a. Implement the dispatchRequestMessage method.

The dispatchRequestMessage method dispatches filtered Chordiant service request
messages, enabling outbound XML messages to be sent to JMS and other potential
destinations.

<?xml version="1.0"?>
<!DOCTYPE Root SYSTEM "../../master.dtd">
<Root>

<Section>CustomObjectConfiguration
<Tag>OutboundMessageHelper.name

<Value>com.chordiant.service.message.OutboundMessageHelper</Value>
</Tag>

</Section>
</Root>

Code 10-1: JXE_CustomObjects.xml Configuration File

dispatchRequestMessage
public void dispatchRequestMessage(

java.lang.Object message)
throws java.lang.Exception

Code 10-2: dispatchRequestMessage Method Signature
246 Foundation Server Developer’s Guide, release 5.7

Directing Outbound Messages to Queues and Topics
b. Implement the dispatchResponseMessage method.

The dispatchResponseMessage method dispatches filtered Chordiant service
response messages, enabling outbound XML messages to be sent to JMS and other
potential destinations.

c. Implement the ServiceControlResponse method.

The ServiceControlResponse method executes a service control on the Message
Dispatcher. The ServiceControlResponse method returns a ServiceControlResponse
object containing a success flag and message, and throws an exception when the
service processing fails or the command is invalid.

You can use the XMLMessageDispatcher reference implementation as a guide for
implementing a custom Message Dispatcher.

3. Configure the Message Dispatchers.

Note: Configuration is done in both the OutboundMessage.xml and master.dtd
files. Relevant sections of both documents are shown in this step.

You can configure the following elements for Message Dispatchers:

— RESOURCE_TAG_FOR_JMS_ENABLED: Enables or disables access to JMS for the
Message Dispatcher class. To enable or disable access, specify a value of true or false
respectively. The default value is false, so you must change it to true for messaging to
work.

Code Sample 10-5 illustrates how to enable access to JMS for the Message Dispatcher
class.

dispatchResponseMessage
public void dispatchResponseMessage(

java.lang.Object message)
throws java.lang.Exception

Code 10-3: dispatchResponseMessage Method Signature

serviceControl public com.chordiant.service.ServiceControlResponse
serviceControl(com.chordiant.service.ServiceControlRequest
theRequest)

throws java.lang.Exception

Code 10-4: ServiceControlResponse Method Signature

<Tag>RESOURCE_TAG_FOR_JMS_ENABLED
<Value>true</Value>

</Tag>

Code 10-5: Enabling Access to JMS
Chapter 10: Chordiant Event Server 247

Directing Outbound Messages to Queues and Topics
— RESOURCE_TAG_FOR_DOCUMENT_TYPE: Specifies the XML document, object,
or message type expected by the Message Dispatcher class. The valid values are:
JDOM, W3C, PAYLOAD, and STRING (not case-sensitive). There is no default value.

Code Sample 10-6 illustrates how to specify the document type of payload.

— RESOURCE_TAG_FOR_TOPIC_OR_QUEUE: Specifies whether the Message
Dispatcher is to use a queue or topic. The value is a pointer to an entry that must be
set in the messaging section of the master.dtd file.

In Code Sample 10-7, the master.dtd file entry specifies that the Message Dispatcher
is to use a queue.

— RESOURCE_TAG_FOR_OUTBOUND_TOPIC_OR_QUEUE_NAME: Specifies the
name of the outbound queue or topic. The value is a pointer to an entry that must be
set in the messaging section of the master.dtd file.

Code Sample 10-9 shows the actual name of the outbound queue is specified in the
master.dtd file.

— RESOURCE_TAG_FOR_JMS_FACTORY_NAME: Specifies the name of the queue
or topic connection factory. The value is a pointer to an entry that must be set in the
messaging section of the master.dtd file

Code Sample 10-11 shows the connection factory definition is specified in the
master.dtd file.

<Tag>RESOURCE_TAG_FOR_DOCUMENT_TYPE
<Value>payload</Value>

</Tag>

Code 10-6: Specifying the payload Document Type

<Tag>RESOURCE_TAG_FOR_TOPIC_OR_QUEUE
<Value>&JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE;</Value>

</Tag>

<!ENTITY JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE "queue">

Code 10-7: master.dtd Entry for Message Dispatcher

<Tag>RESOURCE_TAG_FOR_OUTBOUND_TOPIC_OR_QUEUE_NAME
<Value>&JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE_NAME;</Value>

</Tag>

Code 10-8: Specifying the Name of the Outbound Queue or Topic

<!ENTITY JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE_NAME
"com_chordiant_jxe_OutboundQueue">

Code 10-9: master.dtd Entry for Outbound Queue

<Tag>RESOURCE_TAG_FOR_JMS_FACTORY_NAME
<Value>&JXE_OUTBOUND_JMS_CONNECTION_FACTORY_NAME;</Value>

</Tag>

Code 10-10: Specifying the Name of the Queue or Topic Connection Factory

<!ENTITY JXE_OUTBOUND_JMS_CONNECTION_FACTORY_NAME
"Foundation_Server_Queue_Connection_Factory">

Code 10-11: master.dtd Entry for Connection Factory
248 Foundation Server Developer’s Guide, release 5.7

Directing Outbound Messages to Queues and Topics
— RESOURCE_TAG_FOR_MAX_SLEEP_SECONDS: Defines the maximum number
of seconds that the XMLMessageDispatcher will wait between attempts to find and
create the JMS objects. The default value is 15. Any positive integer is valid.

— RESOURCE_TAG_FOR_MAX_SETUP_RETRIES: Defines the maximum number of
retries that the XMLMessageDispatcher will attempt to find and create the JMS
objects. The default value is 10. Any positive integer is valid.

— RESOURCE_TAG_FOR_JMS_PERSISTENCE: Defines whether JMS messages are to
be put to queues in a persistence fashion. Production systems should always use
TRUE. If this tag is removed or commented out, the default value is TRUE.

Code Sample 10-15 illustrates the configuration section for the XMLMessageDispatcher
reference implementation.

<Tag>RESOURCE_TAG_FOR_MAX_SLEEP_SECONDS
<Value>15</Value>

</Tag>

Code 10-12: Defining the Maximum Sleep Seconds

<Tag>RESOURCE_TAG_FOR_MAX_SETUP_RETRIES
<Value>10</Value>

</Tag>

Code 10-13: Defining the Maximum Number of Retries

<Tag>RESOURCE_TAG_FOR_JMS_PERSISTENCE
<Value>FALSE</Value>

</Tag>

Code 10-14: Defining Using Queues or Persistence

<Section>com.chordiant.service.message.xml.XMLMessageDispatcher
<Tag>RESOURCE_TAG_FOR_JMS_ENABLED

<Value>true</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_DOCUMENT_TYPE

<Value>payload</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_TOPIC_OR_QUEUE

<Value>&JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE;</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_OUTBOUND_TOPIC_OR_QUEUE_NAME

<Value>&JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE_NAME;</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_JMS_CONNECTION_FACTORY_NAME

<Value>&JXE_OUTBOUND_JMS_CONNECTION_FACTORY_NAME;</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_MAX_SLEEP_SECONDS

<Value>15</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_MAX_SETUP_RETRIES

<Value>10</Value>
</Tag>
<Tag>RESOURCE_TAG_FOR_JMS_PERSISTENCE

<Value>FALSE</Value>
</Tag>
</Section>

Code 10-15: XMLMessageDispatcher Section of OutboundMessage.xml Configuration File
Chapter 10: Chordiant Event Server 249

Directing Outbound Messages to Queues and Topics
Code Sample 10-16 shows the corresponding messaging section of the master.dtd file.

4. Configure the OutboundMessageHelper to define the filters for service method request and
response messages.

You can configure the OutboundMessageHelper to specify the messages to inject into JMS
queues and topics based on the specific Chordiant service method requests and responses.

Specifically, you can configure the following elements in the OutboundMessageHelper section
of the outboundmessagehelper.xml configuration file.

— RESOURCE_TAG_FOR_JMS_ENABLED: Enables or disables outbound
asynchronous XML messaging capabilities within Foundation Server. To enable or
disable messaging, specify a value of true or false respectively. The default value is
false, so you must change it to true for messaging to work. Code Sample 10-17
illustrates how to enable messaging.

The OutboundMessageHelper can contain one or more filters in one of two formats:

— {service}.{method}.response: Specifies the fully-qualified name for the Message
Dispatcher class that sends the response data initially directed to the
{service}.{method} to the JMS queue or topic.

— {service}.{method}.request: Specifies the fully-qualified name for the Message
Dispatcher class that sends the request data initially directed to the {service}.{method}
to the JMS queue or topic.

Code Sample 10-18 illustrates how to specify the XMLMessageDispatcher as the class to send
response data produced by the HelloWorldService.DOIT method.

!-- JXE Asynchronous Messaging Specific entities -->
<!--==-->
<!ENTITY JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE "queue">
<!ENTITY JXE_OUTBOUND_JMS_CONNECTION_FACTORY_NAME "FOUNDATION_SERVER_QUEUE_CONNECTION_FACTORY">
<!ENTITY JXE_OUTBOUND_JMS_TOPIC_OR_QUEUE_NAME "com_chordiant_jxe_OutboundQueue">

Code 10-16: Event Server Section of master.dtd Configuration File

<Tag>RESOURCE_TAG_FOR_JMS_ENABLED
<Value>true</Value>

</Tag>

Code 10-17: Enabling Messaging

<Tag>HelloWorldService.DOIT.response
<Value>com.chordiant.service.message.xml.XMLMessageDispatcher</Value>

</Tag>

Code 10-18: Specifying XMLMessageDispatcher
250 Foundation Server Developer’s Guide, release 5.7

Accessing Messages in Queues and Topics
Code Sample 10-19 illustrates the configuration section for the OutboundMessageHelper
configured with the settings described in this step.

ACCESSING MESSAGES IN QUEUES AND TOPICS

You do not have to work with configuration files to receive incoming messages. You configure the
MDBs through the application server’s deployment descriptor.

Creating Addit ional MDBs

Each MDB can listen to one and only one destination. If you need to listen to more than one queue,
you must create additional MDBs.

To create additional MDBs:

1. Create a copy of an existing MDB.

2. Give the new MDB a new JNDI name and point it to a different destination.

3. Save the MDB.

<Section>com.chordiant.service.message.OutboundMessageHelper
<Tag>RESOURCE_TAG_FOR_JMS_ENABLED

<Value>true</Value>
</Tag>
<Tag>AccountService.getAccount_String_String_CCICMAccount.request

<Value>com.chordiant.service.message.xml.XMLMessageDispatcher</Value>
</Tag>
<Tag>HelloWorldService.DOIT.response

<Value>com.chordiant.service.message.xml.XMLMessageDispatcher</Value>
</Tag>

</Section>

Code 10-19: OutboundMessageHelper Section of OutboundMessageHelper.xml Configuration File
Chapter 10: Chordiant Event Server 251

Accessing Messages in Queues and Topics
252 Foundation Server Developer’s Guide, release 5.7

Chapter 11
Security
During execution, users (or the application run by a user) must log in using a user name and
password. The Security Manager service then returns an authentication token. The authentication
token is used in every business service method to identify the caller. By passing the authentication
token in the method, the security authorization module can grant or deny the caller's access to the
corresponding business service.

Authentication (logging onto the system) and authorization (permission to use specific objects) are
two separate modules in security. This modular design enables you to customize your
authentication and authorization implementation separately.

• Authentication implementation is registered to the Chordiant security as authentication
provider. Chordiant security provides a default, LDAP-based authentication implementation.
This implementation authenticates a user based on the username and password stored in
external LDAP server (specifically, an Sun ONE Directory Server). This enables you to
leverage an existing enterprise authentication infrastructure.

Although the user information used by the authentication module can exist on an external
LDAP server, the Chordiant authorization module requires a mirror image of the user
information to be maintained in the Chordiant database to double-check a user’s identity once
they have been authenticated. The default Chordiant security implementation requires that
only the “unique user identifier” of each user should be stored in the Chordiant database. This
unique user identifier is the user’s login identification, for example, the user login name or
email address. In the context of an LDAP-based authentication implementation, this unique
user identifier could be the relative distinguished name (RDN) of the user in the LDAP server.

• Authorization implementation is registered to the Chordiant security as security policies.
Multiple policies can be registered. The default implementation provided by Chordiant is a
security policy based on Access Control Entities (ACE). This policy is detailed throughout this
chapter.

You can administer the Security Manager service, including adding resources and administering
policies, using the Tools Platform Administration Manager. For more information, refer to the
Chordiant 5 Tools Platform Administration Manager Guide.
253

Security Elements
SECURITY ELEMENTS

The Security Manager service uses the following types of information:

• Authentication information — This includes the user name and password. An authentication
check ensures that the user has a valid username and password on the system. Once the
authentication check is completed, an authentication token is returned.

• Authorization information — This includes profile information and access control
information. Profile information specifies the roles and groups to which users are assigned.
Access control information defines object access privileges for roles, groups, or users. Access
control can be applied to roles, groups, or users.

This section describes the following topics:

• “Authentication” on page 254

• “Authorization” on page 255

• “Levels of Security and Principal Identifiers” on page 255

• “Objects Under Security Control” on page 256

• “Access Control Lists and Entities” on page 257

Authentication

Foundation Server employs a user name and password to perform authentication.

The authentication process typically has these general steps:

1. A user requests an authentication token using a user name and password.

2. The Security Manager service verifies the user name and password against an external
security server using LDAP.

3. When the user name and password are verified, the Security Manager service creates an
authentication token representing the user and returns it to the client.

The authentication token is passed as a parameter for service calls throughout the Chordiant
system.

The Security Manager service maintains an authentication token for each authenticated request.
Each authentication token includes expiration information which is checked during authorization
requests. When token expiration occurs, the system raises an exception. Client applications can
then request a new authentication token, which is generated with a new expiration time. Token
expiration can be turned off using the tokenexpiration tag in the security configuration file.

If you choose, you can customize the authentication token. For additional information, refer to
“Customizing the Authentication Token” on page 282.
254 Foundation Server Developer’s Guide, release 5.7

Security Elements
Authorization

Authorization can be performed for each available resource, including each method on each
service. Access to the methods can be managed at a user, group, or role level. Access can also be
managed by individual APIs or at the service level. The administration of business service API
security is done by granting or denying access to the corresponding resource objects. By default,
the admin role can call all business service APIs. For details on managing authorization of
business services, refer to “Managing Business Services as Resources” on page 270.

Levels of Security and Principal Identif iers

Foundation Server grants and restricts security based on the following principal identifiers:

• Role — You can create roles within an organization and assign users to them. Examples of
roles include Administrator, Director, Call Center Director and Accountant. A user can have
more than one role.

In Figure 11-1, there are two roles: the Task Force Role and the Manager Role. Users have been
assigned to these roles.

Role information is stored in the Roleinfo2 table.

Figure 11-1: Levels of Security

• Group — Groups are a hierarchical, logical grouping of users. Each group in an organization,
independent of whether the group is based on geography or function, has security privileges
associated with it. Each user can belong to only one group, but groups can belong to other
groups in a hierarchy.

Each individual in the organization is assigned to a single group. However, they are all a part
of the largest root group, Company.

In Figure 11-1, A. Harper is a member of the Accounting, Western Branch, and Company
groups.

Group information is stored in the Groupinfo table.
Chapter 11: Security 255

Security Elements
• User — A person within an organization. A user can be assigned zero or more roles, but can
only belong to a single group. However, users implicitly belong to the corresponding parent
and ancestor groups within the hierarchy.

In Figure 11-1, D. Allen and A. Harper are assigned to the Task Force role, since they are
involved in this special project. In addition, A. Harper and T. Paul are both managers and so
are assigned to the Manager role.

User information is stored in the Userinfo table.

Roles and permissions are assigned using the Administration Manager tool. Refer to the Chordiant
5 Tools Platform Administration Manager Guide for details on using this tool.

Objects Under Security Control

The following entities can be controlled by Chordiant security. They are all administered through
the Administration Manager tool. Note that in addition to being security principals, as described
in “Levels of Security and Principal Identifiers” on page 255, roles, groups, and users are also
objects which are under security control.

• Roles — You can grant or deny access to role records, including reading, creating, deleting,
and modifying a role. To assign a role to a user, the user making the assignment must have the
Modify right for the role. This user is often the Administrator, but other users can also have
this right. Exercise caution when providing Modify rights to sensitive roles with a lot of
functionality; only trusted users should be able to assign themselves or others to
highly-sensitive roles.

• Groups — You can grant or deny access to group records, including reading, creating,
deleting, and modifying groups. As with assigning roles, the Modify right gives access to
assign users to groups. The user must have the Modify right to both the source group and
target group for moving users between groups. Again, these functions are usually under the
control of the Administrator, but any user who is given the Modify right can assign users to
groups.

• Users — You can grant or deny access to user records, including reading, creating, and
deleting users and assigning them to groups and roles.

• Properties — Properties define an object. For example, a user object can contain user name
and password properties. A queue object can contain language, service type, and product
properties. You can control access to properties, so only certain parties are granted read or
write access to sensitive information like passwords.

• Resources — Resources are structured string objects, which by themselves do not have any
meaning. They merely represent actual resources that are used by applications. Applications
can use resources to manage application-specific security. For example, Foundation Server
uses resources to manage security access to business service APIs. The CAFE framework uses
resources to manage security access to desktop menus. By using resources to manage
application-specific securities, applications do not have to implement their own security
policy.

Refer to “Managing Business Services as Resources” on page 270 for details on organizing
information about services.
256 Foundation Server Developer’s Guide, release 5.7

Security Elements
• Queue Definitions — The logical representation of JMS queues lives in the Chordiant
database. You can grant or deny users’ access to queues.

Access Control Lists and Entit ies

The Security Manager service uses Access Control Lists (ACL) and associated Access Control
Entities (ACE) to manage access to objects. An ACE contains the following information:

Figure 11-2: ACE Record Stored in ACE2 Table

• objectid — Together with the objecttype, uniquely identifies the object with which the ACE is
associated.

• objecttype — Describes the object (see “Objects Under Security Control” on page
256).Together with the objectid, uniquely identifies the object with which the ACE is
associated.

• principalid — Uniquely identifies the user, group, or role to which the access control
information applies.

• principaltype — User, Group, or Role.

• securitymask — A 64-bit mask used to represent specific security rights. See “Security Mask”
on page 258.

• acetype — 0=grant ACE (grants the right of a principal to an object); 1=deny ACE (denies the
right of a principal to an object).
Chapter 11: Security 257

Security Elements
Security Mask

The security mask contains the rights for a specific resource:

• Read — Enables principal to read, but not modify an object. This includes, for example, access
to call a service API, which is the type of access most commonly used.

• Modify — Enables principal to change an object. The Modify right is used by different objects
for different purposes. For example, to be able to assign a role for a user, you must have Modify
access to that role. Modifying a service API means being able to actually change the code. To
call the service API, you only need Read access to it.

• Delete — Enables principal to remove the object. Use this sparingly—only certain individuals
should be able to delete objects.

• Manage security — Enables principal to modify the security characteristics for the object.
This right allows for security delegation. By default, the admin user has full access to all
objects. The admin user can assign the manage security right to other users. Users who are
assigned this right can then grant or deny other security access rights for the object to other
users, groups, and roles.

This information is encoded in the first four bits of the security mask.

Figure 11-3: Security Rights Encoded in Security Mask

This example shows that this principal has Read, Modify, and Delete rights, but does not have
Manage rights.

Unused bits in the security mask allow for future extension of object security. For example, new
access privileges, like Assign instead of Modify, can be introduced for existing object types. Or new
object types can be introduced with object-specific access privileges other than the currently
available Read, Modify, Delete, and Manage rights.
258 Foundation Server Developer’s Guide, release 5.7

Security Elements
Figure 11-4 illustrates the logical relationship between objects, ACLs, and ACEs.

Figure 11-4: Access Control Lists and Entities

Security Resolution

Every object within Foundation Server can have an ACL, which can consist of zero or more ACEs.
Each ACE specifies the rights (positive or negative) of the principal specified using the principal
identifier and type.

In cases when an object does not directly have an associated ACL, it inherits the ACL from parent
and ancestor objects. In addition, each ACL is sorted to place ACEs with negative rights in front.
This means that the Security Manager service first checks to determine whether a principal has
been explicitly denied access to a object before determining whether positive rights exist.

In cases when no security resolution can be found for an object, the default behavior is to deny
access to the object to all principals.
Chapter 11: Security 259

Security Elements
The security resolution mechanism uses the flow illustrated in Figure 11-5.

Figure 11-5: Security Resolution Flow

1. The system determines the user id, role ids, and group ids of the user.

Users can be assigned multiple roles, such as Engineer, Customer Service Representative, or
Accountant, as required. Likewise, while users can only belong to a single group, users are
also implicitly associated with the parent and ancestor groups in the organizational hierarchy.

2. The system gets the ACL.

3. The system gets the ACEs associated with the ACL.

4. The system checks ACEs with negative rights, if available, to determine whether any of the
principals collected in Step 1 have been explicitly denied the requested access to the object.

There is no difference in significance between principal types. This means that a user can be
denied access to an object because of the user id, role ids, or group id.

If the requested access is explicitly denied to one of the principals, stop here. The requested
access is denied.
260 Foundation Server Developer’s Guide, release 5.7

Security Elements
5. The system checks ACEs with positive rights, if available, to determine whether any one of the
principals has been given the requested access to the object.

If the requested access is granted to one of the principals, stop here. The requested access is
granted.

6. In cases when no answer is found in Step 4 or Step 5, either because:

— no ACL is defined for the object, or

— the defined ACL has not defined the requested access in any one of the ACE records,

the system checks the ACL of the parent object, if one exists.

This process of moving up the object hierarchy is repeated until negative or positive access can
be determined.

7. In cases when no answer can be found in the object hierarchy, the system denies access to the
object.

Security Resolution Example

Figure 11-6 shows the security permissions at Harmony Bank. It shows the users, groups, roles,
and resources. For information about resource structure, refer to “Managing Business Services as
Resources” on page 270.

Figure 11-6: Security Resolution at Harmony Bank
Chapter 11: Security 261

Security Elements
First, determine the groups and roles for a specific user.

Anna Rodriguez is a member of the following groups: Harmony Bank, North America, United
States, Western US, and San Francisco. She also plays the following roles: Branch Teller and Q1
Task Force.

Next, determine the rights of Anna’s identity: Can Anna access the Account Service?

Look directly at the Account Service. None of her roles has any explicit grants or denials of access.
So look to the parent object in the hierarchy, Service. Anna, as a Branch Teller, has an explicit
denial of access to the Service group. That will hold for all services within that group as well. So
Anna does not have access to the Account Service.

Does Anna have access to the PartyRole Service?

Yes. You can see from the explicit access grant from her role as a Branch Teller to the PartyRole
Service that she has access. It does not matter that she is denied access to the Service resource. You
only look up the hierarchy when there is no explicit information at the target level.

It is possible for a user to have both a grant and a deny at the same level, perhaps from being
assigned to more than one group. In this case hierarchy is not involved. Denial always wins and
the user will not have access to that particular resource.

Note that the denial of writing at the root level does not affect the reading grant at lower levels.
Reading a service means that you have access to it and can use it.

Special Objects

There are several special objects within the security architecture to allow for convenience of
security administration.

Special User

• Administrator — The special administrator user has full access to all objects. The
administrator’s userid=1. Regardless of the username, as long as the userid=1, this user has
full access.

Special Roles

• Everyone — This role is automatically assigned to every user and cannot be un-assigned. This
is convenient for specifying global rights. For the Everyone role, the roleid=3.

• User — This role is automatically assigned to every user added by Profile Manager.

Special Object

• EveryObject — An object with the objectid = 0 represents every object of that type. This is
useful for granting or denying access to objects that do not support hierarchy, for example, the
queue object.
262 Foundation Server Developer’s Guide, release 5.7

Security Elements
Security Access to Non-Existent Objects

Access to objects that do not exist, for example a queue with a bogus ID, depends on how you set
up your system. This provides you more flexibility in your system instead of just globally granting
or denying access to all non-existent objects for all users.

Scenario

For example, say a user is trying to access a queue with an id=999. Let’s say that this queue does
not exist in the system. When this request goes through the authorization process, what will
happen?

Use Case A: EveryObject Access

If this user has explicit access to the special object, EveryObject, as described above, this user will
automatically have access to queue 999, even though this queue does not actually exist. As
described in “Security Resolution” on page 259, if no ACEs are found for the object in question,
the system checks upstream for specific grant or deny access. A user with an explicit EveryObject
grant will be able to access even a non-existent object.

If a system is deployed like this, then depending on the specific API implementation, many API
implementations on non-existent object IDs will not be operative, while other APIs can send a
message saying the object does not exist.

Use Case B: No Access

If this user does not have explicit access to the special object, EveryObject, as described above, this
user will be denied access to Queue 999. Since this queue object does not exist, by definition, it will
not have an ACE. Without an ACE, there are no explicit grants to this object, so access is denied. A
security denied exception will be thrown.

However, remember that receiving this exception could mean either that

• the object doesn’t exist, or

• the object exists, but the user doesn’t have access to it.

In constructing your own messages, in this situation, you can choose to write a message like this:

“Cannot access this queue because it either has been erased or because you do not have
access to it.”
Chapter 11: Security 263

Security Architecture
SECURITY ARCHITECTURE

The Security Manager service consists of a set of components that interact with other Foundation
Server services and client applications to implement the security model.

Figure 11-7 illustrates the Security Manager service and its related components.

Figure 11-7: Security Manager Service Architecture
264 Foundation Server Developer’s Guide, release 5.7

Security Architecture
The principal entities related to the Security Manager service are:

• Security Manager Service — The Foundation Server service responsible for implementing the
authentication and authorization model for Chordiant applications.

• Security Manager Client Agent — The interface used by client applications to invoke remote
services on the Security Manager.

• LDAP Authentication Handler — Chordiant security provides a default LDAP-based
authentication implementation. The Chordiant authentication implementation provides the
following services:

— Authentication

— Change password

— Two-way synchronization between LDAP and Chordiant database

— Get password grace period (requires specific LDAP server configuration)

During startup, Foundation Server loads the Security Handlers specified in the
SecurityManager.xml file. For more information on the SecurityManager.xml file, see
“Configuring SecurityManager.xml” on page 271.

• Authorization Manager — Determines whether a principal, identified by either a user id, role
id, or group id, has access to a specified object within Foundation Server by accessing the
authorization data store.

• Administration Manager — The utility used to grant and deny access and rights to objects by
means of Access Control Lists and Access Control Entities. For more information, refer to the
Chordiant 5 Tools Platform Administration Manager Guide.

• Cache Manager — The cache manager manages all of the caches listed below and makes sure
that caches are synchronized across clusters. There is one cache manager per JVM. Caches are
synchronized through JMS. To maintain security, this synchronization should take place
across a secure wire.

— ACE cache: All ACE records are loaded at startup time.

— Resource cache: All resources are loaded at startup time. The Resource cache is used
by the ResourceSecurity implementation for better performance.

— User profile cache: Cache of users, groups, and roles. Only users who made
authorization inquiries recently are cached. So users who are least active have more
chance to be discarded from cache. The cache size is configurable, so you can decide
how many users can be cached in the system.
Chapter 11: Security 265

Using the Security Manager Service
USING THE SECURITY MANAG ER SER VICE

The Security Manager service enables you to use the security features of Foundation Server within
your enterprise applications. The Security Manager service offers an API, accessible through the
SecurityMgrBeanClientAgent, that can be partitioned according to the following functions:

• Authenticating users

• Authorizing users

• Managing ACLs and ACEs

The Security Manager service raises a SecurityTokenExpiredException when a security token
expires. The exception is propagated through the calling stack, enabling the exception to be
handled implicitly or explicitly by calling methods.

Applications can handle expired tokens either by renewing the token, or displaying an error
message. Applications should only renew tokens when there is an active HTTP session.

Authentication token expiration is a back-end expiration mechanism. It enforces a system-level
expiration of each user authentication, which is independent of any application-level “time-out”
implementation. For example, for a browser-based thin client implementation, the application
could implement a session time-out mechanism. Such time-out mechanisms, in general, should be
no more than the system expiration time configured for authentication token expiration. This way,
the application can have a chance to renew the authentication token before the token expires.

This section describes the following topics:

• “APIs for Authenticating Users” on page 267

• “APIs for Authorizing Users” on page 268

• “Managing Access Control Lists and Entities” on page 269

Notes: This section provides an overview of the methods in the
SecurityMgrBeanClientAgent. For detailed information about each method,
refer to the Javadoc.

These facilities are also exposed through the Administration Manager application
provided with the Chordiant 5 Tools Platform. Refer to the Chordiant 5 Tools
Platform Administration Manager Guide for details.
266 Foundation Server Developer’s Guide, release 5.7

Using the Security Manager Service
APIs for Authenticating Users

The Security Manager service enables applications to authenticate users, change user passwords,
and renew an authentication token using the following methods:

• authenticate — Returns an authentication token for a user based on the specified user name
and password.

• getAuthenticationToken — Returns an authentication token object, given the authentication
token string. The password field of the token object is intentionally set to empty to obscure it
from hackers.

• renewToken — Returns a renewed authentication token.

• changePassword — Changes the password for a user. The method requires a user name and
existing authentication token. This API is generally used by the Profile Manager.

• getPasswordGracePeroid — Determines the grace period for a user password.

In order for the API to work (returning the time, in seconds, left until the password expires)
the Sun ONE Directory Server must be configured appropriately:

— The password policy on the Sun ONE Directory Server must be configured to enable
password expiration. Select the Password expires after xxx days option and enter a
valid number for the days.

— The Sending warning xxx days before password expires option must have the xxx
days set to be equal to the password expiration date entered above.

Note: The API will not be able to obtain a password grace period without this setup. It
will return zero instead, meaning no password expiration information is
available.

String authenticate(userName, password)

AuthenticationToken getAuthenticationToken(tokenStr)

String renewToken(userName, authenticationToken)

void changePassword(userName, authenticationToken, password, newPassword)

void changePassword(userName, authenticationToken, password)

Integer getPasswordGracePeriod(userName, authenticationToken)
Chapter 11: Security 267

Using the Security Manager Service
APIs for Authorizing Users

Applications can grant or deny access and rights, as well as determine the rights for an object
using the methods listed below.

• authorize — Checks to see if the caller has read access to the specified resource. The resource
must be specified with the complete path within the resource directory, separated by slashes
(/). A second form of this method enables one user to check the read authorization rights of
another user for a given resource name.

• haveRight — Test for a specified access right for either an object, or for an array of objects. The
right is given either as a security mask or as a right. This method uses userid instead of
username. The authorize method, described above, uses username.

The following group of methods are cumulative operations, adding to existing grant or deny
rights:

• denyAccess — Explicitly deny a right for an principal/object pair The principal can be either
a user, a role, or a group.

• getAllowedRight — Get the explicitly granted right for the principal/object pair.

• getDeniedRight — Get the explicitly denied right for a principal/object pair.

• getRight — Determine the access right for an object, or for an array of objects.

• grantAccess — Explicitly grant right for the principal/object pair. The principal can be either
a user, a role, or a group.

authorize(username, authtoken, resourcename)

authorize(username, authtoken, username, resourcename)

boolean haveRight(userid, objid, objType, securitymask)

boolean haveRight(userid, objid, objType, testRight)

void denyAccess(userName, authenticationToken, pid, ptype, objid, objtype, right)

Right getAllowedRight(pid, ptype, objid, objtype)

Right getDeniedRight(pid, ptype, objid, objtype)

Right getRight(userid, objid, objType)

void grantAccess(userName, authenticationToken, pid, ptype, objid, objtype, right)
268 Foundation Server Developer’s Guide, release 5.7

Using the Security Manager Service
The following group of methods are non-cumulative operations. They set the grant or deny rights
to the values specified, overriding previous rights:

• setAllowedRight — Explicitly grant a right for the principal/object pair. The principal can be
either a user, a role, or a group.

• setDeniedRight — Explicitly deny a right for the principal/object pair. The principal can be
either a user, a role, or a group.

Managing Access Control Lists and Entit ies

Applications can use the Security Manager service to add, remove, and retrieve ACE records from
Access Control Lists associated with objects using the following methods:

• addAce — Adds one or more ACE records.

• getAce — Get one or more ACE records for an object, for a principal, or for a principal/object
pair.

• getAceByPrincipal — Get all the ACE records created for the principal.

• removeAce — Remove one or more ACE records, remove all ACE records for an object, or
remove all ACE records for an principal/object pair.

• removeAceByPrincipal — Remove all the ACE records created for the principal .

void setAllowedRight(userName, authenticationToken, pid, ptype, objid, objtype, right)

void setAllowedRight(userName, authenticationToken, pid, ptype, objid, objtype,
securitymask)

void setDeniedRight(userName, authenticationToken, pid, ptype, objid, objtype, right)

void setDeniedRight(userName, authenticationToken, pid, ptype, objid, objtype,
securitymask)

addAce(userName, authenticationToken, ace)

void addAce(userName, authenticationToken, list)

ArrayList getAce(objid, objtype)

ArrayList getAce(Principal p)

ArrayList getAce(pid, ptype, objid, objtype)

ArrayList getAceByPrincipal(pid, ptype)

void removeAce(userName, authenticationToken, objid, objtype)

void removeAce(userName, authenticationToken, ace)

void removeAce(userName, authenticationToken, list)

void removeAce(userName, authenticationToken, pid, ptype, objid, objtype)

void removeAceByPrincipal(userName, authenticationToken, pid, ptype)
Chapter 11: Security 269

Using the Security Manager Service
Managing Business Services as Resources

When you create business services, you must specify who can access them. Chordiant security
uses Resources to control access to business service APIs.

All resources are stored in the resourceInfo table. Business services are resource groups. The
methods, or APIs, within the business service are individual resources. When a user has Read
access to a business service or its methods, that user is authorized to call that service or method.
You can grant Read access to a certain service, including all of its methods, to certain methods and
not to others, or to the entire service, but specifically denying access to certain methods.

Note: The default deployment allows all users Read access to the top “Service”
resources, which means all users can call all business service APIs by default. For
finer security control to individual services and APIs, you need to apply security
administration to individual resources that correspond to the services and APIs.
See “Adding a New Service as a Resource” on page 271 for additional details.

Service API resources must be listed under the service name with the following format:
servicename.APIname.

Figure 11-8: Managing Business Services in the ResourceInfo Table

ServiceName1 (case-sensitive)

ServiceName1.API1

ResourceInfo Table
Resources

Service

ServiceName1.API2
ServiceName1.API3
ServiceName1.API4

ServiceName2 (case-sensitive)

ServiceName2.API1
ServiceName2.API2
ServiceName2.API3
ServiceName2.API4
270 Foundation Server Developer’s Guide, release 5.7

Configuring SecurityManager.xml
Consider the following when configuring business service APIs:

• The business service name must be created as a resource under the Service resource node. The
name is case-sensitive.

• Business service APIs are created as resources under the corresponding business service
name, one resource for each API. The resource name should be in the format of
BusinessServiceName.API_name. Names here are also case-sensitive. The API names are not
necessarily the same as the Java API name. Instead, they should be the same as defined in the
business service implementation constant file.

Keep in mind that creating resources for business service APIs is optional. It is only required if
you have a need to manage access to business service APIs at the individual API level.

Refer to “Security Resolution” on page 259 for details on how a user’s access to a resource is
resolved.

Adding a New Service as a Resource

To add a new service to security control:

1. Add an entry for the service as a new resource under services. You can manage the Resources
through the Administration Manager.

2. Optional. Add some or all of the method (API) constants from the METHOD_CONSTANTS
class you created with your services. (See page 115 for details on defining method constants.)

3. In the Administration Manager, decide who will have access to the service and its APIs. Refer
to the Chordiant 5 Tools Platform Administration Manager Guide for details.

CONFIGURING SECURITYMANAG ER.XML

Foundation Server stores the configuration items for the Security Manager service in the
SecurityManager.xml file.

Code Sample 11-1 on page 272 illustrates a sample security configuration in the
{CHORDIANT_ROOT}/config/Chordiant/components/master/SecurityManager.xml
file. Annotations for the configuration file are to the right of the code sample.

{CHORDIANT_ROOT} corresponds to the chordiant.configuration.configurationRootDirectory
parameter in your application server. Refer to “Configuration Files and the
ConfigurationRootDirectory” on page 46 for more information.

For more information about configuring security for Chordiant 5 Foundation Server, refer to the
Chordiant 5 Tools Platform Administration Manager Guide. For more information about configuration
files in general, refer to Chapter 7, “Configuration Files”.
Chapter 11: Security 271

Configuring SecurityManager.xml
Notes: The SecurityManager.xml file uses substitution values from the
master.dtd file. Here, the actual values are shown. If you open the
configuration file with a text editor, you will see the references to master.dtd.

Be sure that this and other configuration files are kept secure. This file contains
the LDAP manager password and other sensitive information.

<Section>SecurityManager
<Tag>authenticationHostname

<Value>localhost</Value>
</Tag>

Specify the LDAP server information for Hostname and
Portnumber for both authentication.

<Tag>authenticationPortnumber
<Value>1389</Value>

</Tag>
<Tag>authenticationManagerRdn

<Value>cn=Directory Manager</Value>
</Tag>

The directory manager distinguished name (DN)

<Tag>authenticationManagerPassword
<Value>managerd</Value>

</Tag>

The password for the directory manager.

<Tag>loginDnPrefix
<Value>uid</Value>

</Tag>

The prefix for authenticating the login. Usually,
this prefix is the LDAP attribute that constitutes
the relative distinguished name (RDN) of the user
record in the LDAP server. valid values: uid | cn

<Tag>loginBaseDn
<Value>ou=People,ou=chordiant,o=com
</Value>

</Tag>

The suffix for authenticating the login. This is the
location of the user records in the LDAP server.

<Tag>connectionpoolsize
<Value>4</Value>

</Tag>

The number of connections in the connection pool.

<Tag>tokenexpirationinseconds
<Value>0</Value>

</Tag>

The time after which the authentication token
expires. The maximum value is 64800 seconds (18
hours). Zero (0) specifies that the expiration check
is disabled. To enable the expiration check, change
this value to a non-zero number.

A SecurityTokenExpiredException is thrown when tokens
expire.

Default value: 0
<Tag>update_external_user_data

<Value>true</Value>

</Tag>

Used to synchronize the LDAP and Chordiant databases.

If set to true, add/delete user from the Profile
Manager Admin tool will synchronize the changes
between LDAP and Chordiant databases.

If false, the user will only be added/deleted to/from
the Chordiant database with no changes to LDAP.

Default value: true

Code 11-1: Sample security.xml Configuration File
272 Foundation Server Developer’s Guide, release 5.7

Configuring SecurityManager.xml
Service Username and Password

To perform service to service calls, services must have their own username and password. This is
similar to a client agent’s using a username and password to contact a service. The values for
service username and password are configured for all services in the SecurityManager.xml file
as service/service, as shown in Code Sample 11-1.

There must be a user in the LDAP system with this username and password. The Chordiant LDAP
seed data includes a user Service with the password Service. If you are using your own LDAP
implementation, you can migrate this user into your own system. Alternatively, you can use a

The values below this point do not generally require changes.
<Tag>authentication_on_flag

<Value>true</Value>
</Tag>

Determines whether authentication is activated.
This can be used during development.

Valid values: true | false (not case-sensitive)
<Tag>authorization_on_flag

<Value>true</Value>
</Tag>

Determines whether authorization is activated.
This can be used during development.

Valid values: true | false (not case-sensitive)
<Tag>authenticationProtocol

<Value>ldap</Value>
</Tag>

The communication protocol to use between the
Security Service and the LDAP server.

<Tag>token.object
<Value>com.chordiant.core.security.

AuthenticationToken</Value>
</Tag>

The class to use when creating authentication token
objects. If you extend this class, you must specify
your customized class here.

See “Customizing the Authentication Token” on
page 282.

<Tag>authentication.provider
<Value>com.chordiant.core.security.

LDAPAuthenticator</Value>
</Tag>

The authentication driver to load to communicate with
the LDAP server.

<Tag>security.policy.1
<Value>com.chordiant.server.

newsecurity.AcePolicy</Value>
</Tag>

The Java class of the security (authorization)
policies.

<Tag>serviceUserName

 <Value>service</Value>

</Tag>

The username required to authenticate the service.
Any valid String is acceptable.

Default value: service

Default value if not present in SecurityManager.xml:
service

See “Service Username and Password” on page 273.

<Tag>servicePassWord

 <Value>service</Value>

</Tag>

Password required to authenticate service. Any valid
String is acceptable.

Default value: service

Default value if not present in SecurityManager.xml:
service

See “Service Username and Password” on page 273.
</Section>

Code 11-1: Sample security.xml Configuration File (Continued)
Chapter 11: Security 273

Synchronizing Cache Across Clusters with JMS
different username and password to assign to the services. This user, perhaps an administrator,
must have access to all services. You will need to change the values in the
SecurityManager.xml file to match the username and password you choose.

SYNCHRONIZ ING CACHE ACROSS CLUSTERS WITH JMS
The Security Manager in each cluster has its own cache. To keep the security cache synchronized
across clusters, you must set up Java Messaging Service (JMS).

The Cache Manager component of security module uses the JMS topic connection factory,
USERPROFILE_TOPIC_CONNECTION_FACTORY to connect to the JMS topic,
UserProfile_Cache_Topic. Chordiant will automatically generate scripts during the installation to
set up the appropriate JMS vendor of your choice.

Note: This cache is used internally by Chordiant 5 Foundation Server. It is not a publicly
available facility.

SYSTEM SECURITY

Your company’s Information Technology (IT) or Management Information Services (MIS)
department protects your internal network so your back-end data stores and legacy systems are
secure and only accessible to trusted clients on your network. Chordiant does not prescribe how
this should be done.

See “Security and the SocketGatewayService” on page 153 for additional security information.
274 Foundation Server Developer’s Guide, release 5.7

Understanding Interactions Between Security Manager and Authentication Handler
UNDERSTANDING INTERACTIONS BETWEEN SECURITY
MANAGER AND AUTHENTICATION HANDLER

It is important to understand the interactions between the Security Manager service and the
Authentication Handler. The Authentication Handler is called by the Security Manager and is
responsible for creating and validating authentication tokens, which enable users to access
Chordiant services.

Creating an Authentication Token

To get into the system, a client application contacts the SecurityMgrBeanClientAgent. In turn, the
SecurityMgrBeanClientAgent calls the Security Manager service, which calls the Authentication
Handler. The Authentication Handler is responsible for creating the authentication token.

Figure 11-9 illustrates how the authentication token is created within the Authentication Handler.
The numbers correspond to numbered steps after the figure. These components are described in
this section, and also in “Customizing the Authentication Handler” on page 277.

Figure 11-9: Obtaining an Authentication Token
Chapter 11: Security 275

Understanding Interactions Between Security Manager and Authentication Handler
The process of creating an authentication token includes:

1. The authenticate method receives the user name and password from the calling application.
The authenticate method returns an integer, which specifies whether the user is authorized
and is entitled to an authentication token.

2. Upon successful completion of Step 1, the createTokenObject method acts as a factory to
create the AuthenticationToken object. The AuthenticationToken object is an instance of the
class described in the token.object tag of the SecurityManager.xml configuration file. For
more information on customizing the authentication token, refer to “Customizing the
Authentication Handler” on page 277.

3. The Security Manager calls the setters on the AuthenticationToken object to set the user id, user
name, password, and expiration date for the AuthenticationToken object.

4. The encodeTokenObjectToTokenString method encodes the object as a string. The parameters
that were set in Step 3 are used in the encoding process such that this string can be later
decoded back to the same AuthenticationToken object through the
decodeTokenStringToTokenObject method. The decode method is used during validation.
For additional information on this method, refer to page 278.

5. The encryptToken method receives the encoded string and further encrypts it.
For additional information on this method, refer to page 278.

6. The token is sent back to the caller invoking the SecurityMgrBeanClientAgent API. The caller
can hold onto this token and use it in subsequent client agent invocations.

Validating an Authentication Token

Once the client application has obtained the authentication token string, it can use the token when
contacting any Chordiant service.

Figure 11-10 illustrates how a Chordiant service validates the authentication before performing its
work.

Figure 11-10: Checking the Authentication
276 Foundation Server Developer’s Guide, release 5.7

Customizing the Authentication Handler
To validate the Authentication Token:

1. The service passes the authentication token string to the Security Manager service.

2. The Security Manager calls the decryptToken method of the Authentication Handler.
The decryptToken method converts the encrypted string into a clear text string.
For additional information on this method, refer to page 279.

3. The decodeTokenStringToTokenObject turns the string into an AuthenticationToken object,
which can then be deconstructed to determine if the user name, user ID, password, and
expiration date are all acceptable. If there is a problem with any of these parameters or if the
string cannot be decoded, the Security Manager throws an exception. For additional
information on the decode method, refer to page 278.

4. The AuthenticationToken object is returned to the service.

CUSTOMIZING THE AUTHENTICATION HANDLER

During startup, Chordiant 5 Foundation Server loads the Authentication Handler specified in the
SecurityManager.xml configuration file.

By default, Foundation Server uses LDAP as the external security server for authentication. You
can customize the Authentication Handler to use any other security server you have in your
enterprises, such as IBM SecureWay Security Server (RACF).

You can also customize the encryption and decryption of the Authentication Token.

The Chordiant 5 Foundation Server authentication module can be customized by implementing
the interface com.chordiant.core.security.IAuthentication.

To specify the customized class:

1. Update the default value (com.chordiant.core.security.AuthenticationHandler) of
the authentication.provider tag in the SecurityManager.xml configuration file with your
new class name.

Implement all of the methods that are required by the IAuthentication interface:

— Authenticate, createTokenObject, encode, and encrypt methods are also described in
“Creating an Authentication Token” on page 275.

— Decode and decrypt methods are also described in “Validating an Authentication
Token” on page 276.

Public class MyAuthenticationHandler implements IAuthentication {
 …

 };

<Tag>authentication.provider
<Value>com.custom.security.MyLDAPAuthenticator</Value>

</Tag>

Code 11-2: Portion of SecurityManager.xml Configuration File showing authentication.provider Tag
Chapter 11: Security 277

Customizing the Authentication Handler
1. Authenticate Method

public int authenticate(Object userCredential, String securityCredential)

This method authenticates a user based on the user's login credential and security credential.
Definitions of user credential and security credential are implementation-specific. For
example, for a password-based authentication system, the user credential could be the user’s
login name and the security credential could be the user’s password.

This method should return an integer value that is defined in the Java interface
com.chordiant.core.security.AuthenticationHandlerConstants:

— AUTHENTICATION_SUCCESS: authentication success

— INVALID_CREDENTIALS: authentication failed due to invalid password

— NO_SUCH_OBJECT: authentication failed due to invalid login name

— PASSWORD_EXPIRED: authentication failed due to expired password

— USER_LOCKED_OUT: authentication failed due to user lock-out

2. createTokenObject Method

public AuthenticationToken createTokenObject()

If the call to the authenticate method is successful, the createTokenObject method acts as a
factory to create the actual AuthenticationToken. The returned AuthenticationToken object is
populated by the Security Manager and fed into the encode method, which is described next.

3. Encode and Decode Methods

These two methods work together and are highly customizable.

The encode method encodes the AuthenticationToken object obtained from the
“createTokenObject Method”into a string. This string can be further encrypted, if desired,
before it is returned to the SecurityMgrBeanClientAgent. Refer to “Encrypt and Decrypt
Methods” for details on encryption.

The decode method is used when a service needs to verify whether the AuthenticationToken
string it has received from a client agent is valid. The string must be decoded into its
AuthenticationToken object, from which the user id, user name, password, and expiration can
be determined. If there is a problem with any one of these parameters, or if the string cannot
be decoded at all, the Security Manager service throws an exception.

It is essential that you are able to decrypt and decode the string returned from the encode and
encrypt methods into a usable AuthenticationToken object. If you choose to encrypt the
encoded string, you can use two-way encryption algorithms for the encrypt and decypt
methods.

public String encodeTokenObjectToTokenString(Object AuthenticationToken)

public AuthenticationToken decodeTokenStringToTokenObject(String string)
278 Foundation Server Developer’s Guide, release 5.7

Customizing the Authentication Handler
Tip: You can choose to use a highly secure database instead of two-way encryption.
The encode method can store the AuthenticationToken object in the database, it
returns a string as a unique key. This string does not contain any sensitive data,
such as user names or passwords, so you can pass this string without worry. The
decoding process involves using this key to locate the actual
AuthenticationToken object in the database.

4. Encrypt and Decrypt Methods

The encrypt method is used to further encrypt the AuthenticationToken string created by the
encode method. The decrypt method is used to reverse any encryption performed by the
encrypt method.

You can decide that the encode method provides enough security for your needs. In this case,
your encrypt method does not need to further manipulate the string value it is passed — it can
just pass that string right through to the SecurityMgrBeanClientAgent.

You can, on the other hand, decide to add additional encryption to the string. These methods
are highly customizable, so you can add any algorithm you choose.

The encryption algorithm you choose should generate an XML-safe string (that is, strings that
are safe to pass to an XML SAX parser, such as letters and numbers). Otherwise, the token
cannot be put in an XML document for web service usage.

As with the encode and decode methods, it is essential that you are able to decrypt the string
that you encrypted.

5. Service Control Functionality

This method is called by Foundation Server at system startup time. The customized
implementation can use this method to perform customized initialization tasks.

This method is called by Foundation Server when the authentication service is being
shut down. The customized implementation can use this method to perform
customized termination tasks.

public String encryptToken(String clearTxt)

public String decryptToken(String theCypherText)

public void setup()

public void shutdown()
Chapter 11: Security 279

Customizing the Authentication Handler
6. Optionally, the customized implementation could also implement the following interfaces.
These two interface must be implemented if you support password grace period and use
Chordiant Administration Manager to manage user profiles.

— com.chordiant.core.security.IPasswordPolicy

— com.chordiant.core.security.IAuthenticationAdmin

The IPasswordPolicy interface defines a method for password-related functionalities.
Chordiant Security Manager calls methods defined in this interface upon request from a client
application for password-related functionality. If your customization requirement does not
support password-related functionality, you do not have to implement this interface.

Currently there is only one method defined in IPasswordPolicy interface:

This method returns the password grace period, which is the number of seconds before the
password expires.

If your customization does not support password grace period, or if the authentication data
source does not support password expiring functionality, this method should return
NO_PASSWORD_CONTROLS.

If the password has already expired, this method should return PASSWORD_EXPIRED.

The IAuthenticationAdmin interface defines methods called by Chordiant Profile Manager
(part of the Administration Manager tool) for authentication-related administration. These
methods will only be called if the registered authentication handler implements the
IAuthenticationAdmin interface. From the Profile Manager, you can change a user's password,
add, and delete users from the authentication data store. If you do not want to use Chordiant
Profile Manager to manage your authentication data in your security data source, your
customized authentication implementation should not implement this interface.

public int getPasswordGracePeriod(String username, String password)
280 Foundation Server Developer’s Guide, release 5.7

Customizing the Authentication Handler
Here are the methods in the IAuthenticationAdmin interface:

• These two methods are for changing a user’s password from within the Profile Manager. If
you will not be using the Profile Manager for your custom implementation, you can set these
methods to always return true.

This method updates the user's password. It should return true if it successfully
updated the password. Otherwise, it should return false.

The customized implementation can perform password sanity checking before
making the update.

This method updates the user's password, but it does not require the user's old
password. The underlying implementation needs to be able to gain access to update
the user's password first (for example, by impersonating an administrator using the
password provided in configuration files).

• These two methods are called by the Chordiant Profile Manager to add or delete a user from
the underlying authentication data store. They are in effect when the Profile Manager’s
UPDATE_EXTERNAL_USER_DATA constant is set to true. If you will not be using the Profile
Manager for your custom implementation, set this UPDATE_EXTERNAL_USER_DATA
constant to false to make these methods inoperative (or simply not implementing the
IAuthenticationAdmin interface):

 This method allows Chordiant Profile Manager to synchronize the changes on the
Chordiant database to the underlying authentication data storage.

This method allows Chordiant Profile Manager to synchronize the changes on the
Chordiant database to the underlying authentication data storage.

Update the default value (com.chordiant.core.security.AuthenticationHandler) of the
authentication.provider tag in the SecurityManager.xml configuration file with your new class
name.

For information on customizing the Authentication Handler to allow a single sign-on, refer to the
Chordiant 5 Foundation Server Customization Guide.

public boolean changePassword(String username, String oldpasswd,
String newpasswd)

public boolean changePassword(String username, String newpasswd)

public void addLogin(String username, String password)

public void deleteLogin(String username)
Chapter 11: Security 281

Migrating Existing Security Configurations
Customizing the Authentication Token

Chordiant automatically creates an AuthenticationToken object when one is requested.

This AuthenticationToken object includes four parameters, as well as getters and setters for each:

• userid

• user name

• password

• expiration date

These four parameters are required and expected by the Security Manager service and by
Chordiant services. If these parameters are not available, exceptions will be thrown.

In most cases, you can use the token created by Chordiant. If you require additional information,
you can extend the token to add more parameters as well as their associated getters and setters.
You can also further encrypt it through the encoding and encryption methods, described in Step 3
and Step 4 on page 279.

If you choose to encrypt the authentication token, the encryption algorithm you choose should
generate an XML-safe string (that is, strings that are safe to pass to an XML SAX parser, such as
letters and numbers). Otherwise, the token can not be put in an XML document for web service
usage.

The AuthenticationToken object created by the createTokenObject method is specified in the
token.object element in the SecurityManager.xml configuration file. By default, this value is
com.chordiant.core.security.AuthenticationToken. If you choose, you can extend this class to add
your own supplementary information. You must then specify your extended class in the
SecurityManager.xml file.

MIGRATING EXISTING SECURITY CONFIGURATIONS

For information on migrating existing security configurations, refer to the Chordiant 5 Tools
Platform Administration Manager Guide.
282 Foundation Server Developer’s Guide, release 5.7

Chapter 12
Request Server
The Request Server offers an advanced web application infrastructure, a configurable model of
application execution, and a series of best practice recommendations that enable you to develop
sophisticated HTTP-based applications. These applications can range from web self-service
applications, in-house programs for customer service agents, remote branch applications, and
even “headless” applications.

Figure 12-1 illustrates the Request Server model supported by the Chordiant 5 Foundation Server.

Figure 12-1: Request Server Overview

The Request Server model consists of the following components:

• One or more J2EE application servers

Each physical server can host multiple application server replicates, which are the containers
for the Chordiant 5 Foundation Server services, running as Enterprise Java Beans.

• One or more web servers

The web server hosts the Foundation Server infrastructure, responsible for interacting with
thin clients and serving as a bridge to the application servers.

• Clients

These include HTML-based clients, browsers (with Java plug-in), Java applications, and
mobile thin clients, such as wireless devices.
283

The Main Components
Using multiple servers offers a robust, fault tolerant, and load balanced execution environment for
business applications. The system distributes client requests among application servers and
application service replicates.

THE MAIN COMPONENTS

The Request Server includes several components that work together to provide the infrastructure
and support for your web applications. The following is a list describing the main components of
the Request Server:

• Browser — The generator of the HTTP Request. The “browser” can include a web browser, a
thin client, a Java application, or a “headless” application.

• Request Handler Servlet — The server-based component responsible for accepting, handling,
and forwarding the HTTP Request to other components within the system. The Request
Handler Servlet acts as a dispatcher for the web application.

• Request Context Map — An XML-based file that encodes the context maps for the
application, based on Action IDs, and maps requests to handlers.

• Request Context Mapper Helper — A server-based component that reads the Request
Context Map.

• Selectors Helper — A server-based component that helps provide additional context to
requests for mapping requests to selectors within the Request Context Map.

• Device Context Mapper Helper — A server-based component that creates selectors based on
information about the device making the request. For example, a mobile thin client requires
different treatment than a PC-based browser.

• Chordiant Servlet Base Class — A class that implements the baseline servlet functionality
and performs the transformation of the presentation by calling the Transformation Helper. You
will typically extend this class when creating your application logic servlets.

• Application Logic Resource — The application logic for the program. The Application Logic
Resource runs on the application server, and interfaces with business services and other
components of the system using the Chordiant 5 Foundation Server infrastructure. The
application logic, which can be a servlet or a JavaServer Page (JSP), acts as a controller
responsible for reading and writing business data using business services.

• Servlets — Servlets are modules that extend Java-enabled web servers and other
request-response oriented servers. Servlets have no graphical user interface and handle client
requests (HttpServletRequest) through a service method. The service method dispatches each
request to a designated method, and generates an HTML string to return to the web client as
an HttpServletResponse.

• Transformation Helper — Assists the Chordiant Servlet Base Class in the preparation of the
presentation (HTML output) for the application. The Transformation Helper uses XSL-based
stylesheets to output presentations, based on the specific requirements of the application.

• Presentation Resource — Generates the presentation, which can include HTML output and
WML output. A presentation resource can be an XSL stylesheet, an HTML page, a JSP page, an
XML-formatted page, dialogServer content, or a servlet.
284 Foundation Server Developer’s Guide, release 5.7

The Execution Flow
THE EXECUTION FLOW

The Request Server consists of a coordinated execution of the main components of the web
application infrastructure. This section describes the execution flow of the Request Server, with
reference to Figure 12-2.

The execution flow for the web applications includes these steps:

Request Generated and Routed

1. An HTTP Request is generated on a client workstation or device.

In many cases, the HTTP Request is generated by a user working on a thin client or web
browser, including those hosted on devices such as wireless phones. However, the HTTP
Request can also be generated by a “headless” client, such as a piece of software, without
requiring human intervention.

2. The HTTP Request is routed to the Request Handler Servlet.

The Request Handler Servlet is specified as part of the URL, submitted to the web server when
the HTTP Request is generated. Included with the HTTP Request is a parameter specifying the
Action ID, as illustrated in Code Sample 12-1.

3. The Request Handler Servlet uses the Request Context Mapper Helper to find the context for
the web application, based on the Action ID.

Code Sample 12-2 is a segment of a Context Map file illustrating a context for a web
application.

Finding the Context

4. The Request Context Mapper Helper refers to information stored in the Request Context Map
to locate the correct context, as specified by the Action ID.

For more information about the Request Context Map, see “Exploring the Request Context
Map” on page 291.

http://{server-or-domain-name}/{application-path}/RequestHandler?
ActionID={action-id-value}

Code 12-1: HTTP Request

<ACTION_ID>
HelloWorld
<CONTEXT>

<NAME>DEFAULT</NAME>
<APP_LOGIC>/HelloWorldServlet</APP_LOGIC>

</CONTEXT>
<CONTEXT>

<NAME>DEFAULT</NAME>
<PRESENTATION>xsl/HelloWorld.xsl</PRESENTATION>

</CONTEXT>
</ACTION_ID>

Code 12-2: Context Map File Segment Showing Web Application Context
Chapter 12: Request Server 285

The Execution Flow
5. The Request Context Mapper Helper returns the value of the APP_LOGIC parameter for the
appropriate context associated with the Action ID. The value of the APP_LOGIC parameter
could be a servlet or a JavaServer Page. The servlet is then described and mapped in the
web.xml file. See page 323 for more information.

Note: You can display a presentation resource using the ChordiantServletBaseClass
as the application logic resource without having to define a custom application
logic resource, for example, when no business logic is required to handle the
request.

Figure 12-2: Handling Requests
286 Foundation Server Developer’s Guide, release 5.7

The Execution Flow
Interacting with the Application Logic Resource

6. The customer-developed Application Logic Resource can take either of the following forms:

— A servlet, derived from the ChordiantServletBaseClass

— A JavaServer Page

If the Application Logic Resource is a JSP page, the JSP page assumes responsibility of both
the application logic and the presentation.

If the APP_LOGIC parameter specifies a servlet which is described in the web.xml file, the
Request Handler Servlet forwards the HTTP Request to the appropriate servlet, running as the
Application Logic Resource.

The custom application code is implemented in the doService method, which is called by the
service method in the ChordiantServletBaseClass.

The forwarded HTTP Request contains the Action ID and any form data collected from the
original submitted form using the web browser, thin client, or headless client.

7. The doService method, running as the Application Logic Resource, interfaces with business
services and databases to complete the useful work of the application.

When interacting with business services, the Application Logic Resource uses the standard
Foundation Server Architecture to complete the operations. This includes getting a Client
Agent using a ClientAgentHelper, and communicating with the remote service using this
Client Agent.

8. Once the doService method has completed, control returns to the service method in the
ChordiantServletBaseClass.

9. The service method in the ChordiantServletBaseClass invokes the doPresentation method, if
one is defined in the Application Logic Resource.

The doPresentation method, if available, is responsible for generating the response output.
Otherwise, the system uses the default implementation, which either uses the Presentation
resource, if it is in the initial context (a), or invokes the Request Context Mapper (b) again to
locate the appropriate presentation, identified by the PRESENTATION parameter, if it is not
present in the initial context.

The Request Server enables you to separate the application logic from the presentation of the
output, and specify this distinction as part of the application context using the Request
Context Map.
Chapter 12: Request Server 287

The Execution Flow
Finding the Device Context

10. The Request Context Mapper Helper uses the Selectors Helper (a) and the Device Context
Mapper Helper (b) to determine the specific presentation to use, in cases when the
presentation was not found during the initial lookup.

You can include selectors in the Request Context Map to enable the system to select an
appropriate presentation at run-time. Likewise, the system uses the Device Context Mapper
Helper to distinguish between the various types of output devices.

Code Sample 12-3 shows a segment of a Context Map file illustrating the use of context
selectors.

This is useful because the presentation of the output can vary depending on the characteristics
of the device, such as desktop PC versus a wireless phone. Similarly, the presentation can
depend on whether the output is meant for a regular user or a headless client application.

The request context containing the presentation resource is passed to the
ChordiantServletBaseClass (c).

Creating the Presentation

The default implementation of the doPresentation method in the ChordiantServletBaseClass
creates the presentation for the output, using one of the following mechanisms:

• Using the Transformation Helper to provide XSL Translation, creating to output or returning
XML to the client. Described in Step 11.

• Forwarding to an HTML page, a JSP, or another servlet. Described in Step 12.

• Using Chordiant Interaction Server to forward HTML to the client. Described in Step 13.

<CONTEXT SELECTORS="MIME:XML;DEVICE:IE5.5">
<NAME/>
<TRANSFORM_TYPE>client</TRANSFORM_TYPE>
<PRESENTATION>xsl/HelloWorldIE5.5.xsl</PRESENTATION>

</CONTEXT>
<CONTEXT SELECTORS="MIME:WML;DEVICE:NokiaWAPToolkit">

<NAME/>
<PRESENTATION>xsl/HelloWorldWML.xsl</PRESENTATION>

</CONTEXT>

Code 12-3: Context Map File Segment Showing Context Selectors
288 Foundation Server Developer’s Guide, release 5.7

The Execution Flow
11. If the presentation specifies an XSL-based stylesheet, the system uses the Transformation
Helper to generate the results.

The Transformation Helper uses data available through the business objects and performs a
transformation using the XSL-based stylesheet (a). The system transforms Java objects from
the Results object on the Request into an XML representation on which the XSL-based
stylesheet operates. The transformed output is returned directly to the client or browser (b).

For a headless or thin client where presentation results are not required, you can choose to
have the Application Logic servlet return the string “true” or “false” as an indication of
results. In other words, the response contents from an Application Logic Resource can provide
meaningful results to the requester that are not necessarily directly presentable in a display.

The Request Server offers the following XSL transformation types:

— None: This results in XML content.

— Server: This is the default when the presentation resource type is XSL. This XSL
transformation is performed on the server.

— Client: If the presentation resource is XSL, a reference to the XSL is inserted in the
XML. This is useful for clients which can perform their own transformations. For
example, Microsoft Internet Explorer 5.5 and higher can perform their own XSL
transformations. However, versions earlier than IE 6.0 might not have the proper
XML parser components installed. For instructions on obtaining the proper parser
components, refer to “MSXML Parser” on page 337.

— dialogServer is another available transformation type. See Step 13 for details.

12. Depending on the presentation for the application context, dispatching the request to any of
the following:

— an HTML page

— another servlet

— a JSP

In the case of the JSP, the system does not use the Transformation Helper. The JSP
Presentation resource has access to the business object (Application Logic results)
through the HTTP Request and session, which was forwarded from the
ChordiantServletBaseClass.

13. Dispatching the request to the Chordiant Interaction Server. The Chordiant Interaction Server
performs “dialogServer” translation to produce HTML, which is then forwarded to the client.

Receipt by the Client

14. The browser or client device receives the output and handles it accordingly.
Chapter 12: Request Server 289

Understanding Request Context Mapping
UNDERSTANDING REQUEST CONTEXT MAPPING

Chordiant 5 Foundation Server uses an XML-based file to encode the Context Maps for an
application. A server-based component known as the Request Context Mapper Helper reads the
Request Context Map and maps requests to handlers within your application.

This section describes the following topics related to the Request Context Mapping:

• “Application Logic and Presentation Resources” on page 290

• “Exploring the Request Context Map” on page 291

• “Request Context Mapping Execution Flow” on page 293

• “Understanding Selectors and the Selectors Helper” on page 296

• “Deferred Presentation Resource Mapping” on page 299

Application Logic and Presentation Resources

The system uses the following two resources when processing a typical request/response
interaction between a browser and the Request Server:

• An Application Logic Resource

An Application Logic Resource is the software component responsible for performing the
useful work within the web application. You can implement an Application Logic Resource as
either a servlet or as a JavaServer Page.

• A Presentation Resource

A Presentation resource is the software component responsible for formatting the information
in a style and structure that is suitable for a certain class of output device.

In many cases, this involves formatting and structuring information based on known physical
or logical characteristics of an output device, such as a wireless phone, a PC web browser, or a
headless client application.

When you implement an Application Logic Resource as a JSP page, the page assumes the
responsibility of both application logic and presentation (the contents of the HTTP Response).
Servlets, on the other hand, normally provide only the application logic. In the case of servlets, the
presentation is defined through a separate presentation resource, such as a JSP, XSL-based
stylesheet, or Chordiant Interaction Server dialog.

You specify the mapping of a particular request, generated by the browser on the client device,
using a Request Context Map.
290 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Exploring the Request Context Map

When you create a web-based front end to a server-based application, you must establish a
connection between the actions that users can perform through the user interface and the
application logic and presentation resources of your application.

The Request Server enables you to specify this relationship between user actions and application
logic and presentation resources through an XML-based file known as the Request Context Map.

Using Action IDs, you create contexts for the user action which define both the useful work
(Application Logic Resource) as well as the structure and style of the output (the Presentation
Resource). You can define several contexts for each Action ID, as required, together with a selector
attribute which enables the system to determine the appropriate context dynamically based on
run-time values.

By default, the Request Context Map is stored in
{application_path}/WEB-INF/ContextMap.xml. However, you can modify this default
location by specifying a parameter in the Web.xml application descriptor file. Code Sample 12-4
illustrates the Request Context Map format.

Table 12-1 describes the elements of the Request Context Map. Figure 12-5 on page 293 provides
an example of a Request Context Map where you can see these tags used.

<ROOT>
<ACTION_ID>

MyActionId
<CONTEXT>

<NAME>DEFAULT</NAME>
<APP_LOGIC>ServletName</APP_LOGIC>

</CONTEXT>
<CONTEXT SELECTORS="SelectorString">

<NAME/>
<TRANSFORM_TYPE>TransformType</TRANSFORM_TYPE>
<PRESENTATION>XSL_StyleSheet</PRESENTATION>

</CONTEXT>
</ACTION_ID>

</ROOT>

Code 12-4: Format of Request Context Map

TAG DESCRIPTION

<ACTION_ID> </ACTION_ID> A string identifier for the user action.

<CONTEXT> </CONTEXT> An application context, which defines the
application logic resource, presentation
resource, and transformation type. You can
define multiple application contexts based on
selectors, which can include MIME types and
user agent values.

Table 12-1: Request Context Map Tags
Chapter 12: Request Server 291

Understanding Request Context Mapping
<NAME> </NAME> The name of the context. You can assign the
special identifier DEFAULT to indicate the
default context.

<APP_LOGIC> </APP_LOGIC> The logical name of the Application Logic
Resource, which can be either a servlet or a
JSP page. The servlet is then described and
mapped in the web.xml file. See page 323 for
more information on the web.xml file.

<PRESENTATION>
</PRESENTATION>

A presentation resource can be an XSL
stylesheet, an HTML page, a JSP page, a
servlet, an XML-formatted page, or
dialogServer content.

<TRANSFORM_TYPE>
</TRANSFORM_TYPE>

The type of the Transformation Helper.The
following are the valid values for this
parameter:
• client
• server
• none
• dialogServer

TAG DESCRIPTION

Table 12-1: Request Context Map Tags (Continued)
292 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Code Sample 12-5 illustrates a sample of a Request Context Map.

Code 12-5: Sample Request Context Map

Request Context Mapping Execution Flow

The Request Context Mapper Helper is responsible for mapping an HTTP Request, identified by
an Action ID, to the contexts required to handle the request. The Request Context Mapper Helper
uses information in the Request Context Map for the application, as well as the services of the
Selectors Helper to the determine the context information for the application

This section describes the process of mapping an HTTP Request to the contexts needed to handle
the request, as illustrated in Figure 12-3 on page 295.

Here is the execution flow of the Request Context Mapper and Selectors Helper.

1. Upon receiving an HTTP Request from the browser, the Request Handler Servlet calls the
Selectors Helper.

The Selectors Helper looks for selectors, in the form of HTTP Request parameters and
attributes of the correct format, and builds the selectors HashMap.

<ROOT>
<ACTION_ID>

HelloWorld
<CONTEXT>

<!--
Application-logic context for all device- and mime-types.
-->
<NAME>DEFAULT</NAME>
<APP_LOGIC>/HelloWorldServlet</APP_LOGIC>

</CONTEXT>

<CONTEXT>
<!--
Default presentation - i.e., basic server-side XSL transformation.
-->
<NAME>DEFAULT</NAME>
<PRESENTATION>xsl/HelloWorld.xsl</PRESENTATION>

</CONTEXT>
<CONTEXT SELECTORS="MIME:XML;DEVICE:IE5.5">

<!--
Context specifying a transformation type "client."
That is, give IE 5.5 the XML and a reference to
the XSL and make the browser do the XSL transformation.
-->
<NAME/>
<TRANSFORM_TYPE>client</TRANSFORM_TYPE>
<PRESENTATION>xsl/HelloWorldIE5.5.xsl</PRESENTATION>

</CONTEXT>
<CONTEXT SELECTORS="MIME:WML;DEVICE:NokiaWAPToolkit">

<!--
Server-side XSL transformation of XML to WML content.
-->
<NAME/>
<PRESENTATION>xsl/HelloWorldWML.xsl</PRESENTATION>

</CONTEXT>
</ACTION_ID>

</ROOT>
Chapter 12: Request Server 293

Understanding Request Context Mapping
2. The Selectors Helper calls the Device Context Mapper Helper to interpret device-specific
information extracted from the HTTP Request.

The Device Context Mapper Helper creates selectors based on information about the device
making the request. Information about the device is stored in the HTTP Request header at the
time the request is initiated by the user or a software agent.

The Selectors Helper uses the Device Context Mapper Helper, which reads the
DeviceContextMap.xml file to create device-based selectors.

3. The Request Handler Servlet calls the Request Context Mapper to determine the context for
the request.

The Request Context Mapper uses the Action ID and the HashMap of selectors created in Step
1 to retrieve the appropriate values for the context.
294 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Figure 12-3: Mapping a Request to a Context
Chapter 12: Request Server 295

Understanding Request Context Mapping
4. The Request Context Mapper returns the context to the Request Handler Servlet.

The context is set as an attribute on the HttpServletRequest. Setting the entire context as an
attribute precludes the need to perform a second mapping if a presentation resource is later
requested. Likewise, additional elements in the context are made available to the system,
should they be required later.

5. The Request Handler Servlet forwards the request (HttpServletRequest) to the Application
Logic Resource.

The Application Logic Resource can be either a servlet or a JSP page.

Understanding Selectors and the Selectors Helper

In addition to the Action ID, an application can influence the mapping of a request to its resources
through the use of selectors. Selectors are optional attributes of a Context element, and consist of a
String value of a specific pattern.

Note: If no selectors are provided with the request, the system selects the resource with
the Name element value set to DEFAULT.

Selectors provide a dynamic mapping behavior that is sensitive to data from a variety of sources.
The run-time value can be supplied in any combination of the following ways:

• As an HTTP Request parameter

For example, the run-time value can be a value entered in an HTML form.

• As an HTTP Request attribute

For example, the run-time value could be a discount percentage calculated from the order
total of a shopping cart, expressed in BigDecimal form. Note that an HTTP Request attribute
differs from an HTTP Request parameter in that an attribute can be an object of any type,
whereas an HTTP Request parameter is always a String.

• As a session object attribute value

For example, the run-time value could be the order total attribute of a shopping cart object
stored in the current HTTP session.

• Some combination of a user-agents list and MIME type

The source of these selectors can be generated by the device, or browser and the Context
Device Mapper Helper.
296 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Exploring the Par ts of a Selector

Selectors include the following components:

• The HttpServletRequest parameter or attribute

This is also known as the selector request.

• The context selectors attribute

This is the attribute that appears in the Request Context Map file.

• The object (and attribute) or request parameter referenced by the selector request

• Operators

The operators enable you to specify value comparisons.

Selector Request

The selector request can be one of the following:

• A ServletRequest parameter

• A ServletRequest attribute

ServletRequest parameters are contained in the query string or posted form data, and are always
strings. An application can retrieve ServletRequest parameters from the request using the
following method:

ServletRequest attributes, in comparison, are Java objects of any class. Your application can place
ServletRequest attributes on the request using the following method:

To be a selector request, the names must be of the proper form, namely include the prefix
ReqMapParam.

Note that request parameters must come from the requesting device, such as an HTML form,
while request attributes are supplied by the servlet code. This provides an opportunity for
application logic code to inject selectors for the subsequent mapping to a presentation resource.

When the system builds the Selectors table, the Selectors Helper iterates over the HttpRequest
attribute names and the HttpRequest parameter names. If the HttpRequest attribute object is not of
type String, the system ignores it and flags it as an error.

Context Selectors

Selectors in the Context Map file are an attribute of the Context element.

String ServletRequest.getParameter(java.lang.String name)

void setAttribute(java.lang.String name, java.lang.Object o)

<CONTEXT SELECTORS="Account.Balance.GTE.2000:TRUE;LoanAmount.LT.22500:FALSE">
Chapter 12: Request Server 297

Understanding Request Context Mapping
You can specify more than one selector within a context, delimited by semicolons. If you specify
more than one selector, all selectors must match. The Request Context Mapper Helper must match
each piece of the selector string to a key/value pair in the selectors HashMap.

Referenced Object Attributes and Request Parameters

The object attribute or request parameter is the entity upon which the selector is based. For
example, LoanAmount is the request parameter for the following request parameter selector.

The Context Mapper is responsible for finding the object or request parameter that is referenced
by the selector request.

Operators

Operators specify comparison operations within selectors. Table 12-2 outlines the operators you
can use when building selectors.

ReqMapParamREQ1=LoanAmount.LT.22500

OPERATOR DESCRIPTION

EQ Equal to

GT Greater than

GTE Greater than or equal to

LT Less than

LTE Less than or equal to

LIT Literal. The Literal operator does not
perform a comparison, but instead
passes the value through to the mapping
attribute.

Table 12-2: Selector Operators
298 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Deferred Presentation Resource Mapping

The Request Context Mapper can defer the selection of the presentation resource until after the
application logic resource has completed. This happens when a presentation resource was not
found to be present with the Application Logic Resource during the initial lookup. This allows the
application logic to influence the selection by placing objects in the HTTP Request or session.

For example, in the sample Context Map shown in Code Sample 12-6, the application logic code
could add a LoginMessage object to indicate a failed login for the doLogin Action ID. If present,
the Context would then map to a JSP page, which could present the message text and prompt the
user to check the user name and password and try again.

Code 12-6: Using Selectors

Using the range of selector types together with the deferred presentation resource mapping
provides a powerful and flexible tool for personalization, error handling, and multi-channel
support.

<?xml version="1.0" encoding="UTF-8"?>
<ROOT>

<ACTION_ID>
doLogin
<CONTEXT>

<NAME>DEFAULT</NAME>
<APP_LOGIC>/DoLoginServlet</APP_LOGIC>

</CONTEXT>
<CONTEXT>

<NAME>DEFAULT</NAME>
<PRESENTATION>/xsl/NetworkPresenceContainer.xsl</PRESENTATION>

</CONTEXT>
<CONTEXT SELECTORS="LoginMessage.MessageName.EQ.LoginMessage:TRUE">

<NAME>LoginFailed</NAME>
<PRESENTATION>/jsp/Login.jsp</PRESENTATION>

</CONTEXT>
</ACTION_ID>

</ROOT>
Chapter 12: Request Server 299

Understanding Request Context Mapping
Building Selectors

The Selectors Helper reads the Request Context Map, looks for special, predefined servlet request
parameter forms, and returns the processed values in a HashMap. To specify a selector for use in a
mapping, the HTTP Request must contain one or more request parameters or attributes of the
following forms (where [n] is typically an integer which makes the parameter name unique):

• ReqMapParamATTR[n]=RequestAttributeName.AttributeName.
Operator.ComparisonValue

This designates an HTTPServletRequest attribute object attribute.

• ReqMapParamREQ[n]=RequestParameterName.Operator.
ComparisonValue

This designates an HTTP Request parameter.

• ReqMapParamSO[n]=SessionObjectName.AttributeName.
Operator.ComparisonValue

This designates an HTTP Session object attribute.

Example 1

If you want to create a selector to check whether there is an account object in the HttpSession with
a “balance” attribute having a value greater than or equal to 2000, you could use the selector
request parameter, session object, and context selector outlined in Table 12-3.

ENTITY VALUE

Selector
Request Parameter

ReqMapParamSO1=Account.Balance.GTE.2000

Session Object Object name: Account Attribute name: Balance

Context Selector <CONTEXT
SELECTORS=”Account.Balance.GTE.2000:TRUE”>

Table 12-3: Selectors Example 1
300 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Example 2

If you want to create a selector to check whether an HttpRequest parameter with the name
“LoanAmount” has a value less than 300000, you could use the selector request parameter,
HTTP Request parameter, and context selector outlined in Table 12-4.

Example 3

If you want to create a selector to check whether an HttpRequest attribute object with the name
“ErrorMessage” is found with a “MessageName” attribute and the value “RequiredField”, you
could use the selector request parameter, HTTP Request attribute, and context selector outlined in
Table 12-5.

ENTITY VALUE

Selector
Request Parameter

ReqMapParamREQ1=LoanAmount.LT.300000

HTTP Request
Parameter

Request parameter name: LoanAmount

Context Selector <CONTEXT
SELECTORS=”LoanAmount.LT.300000:TRUE”>

Table 12-4: Selectors Example 2

ENTITY VALUE

Selector
Request Parameter

ReqMapParamATTR1=ErrorMessage.
MessageName.EQ.RequiredField

HTTP Request Attribute Name: ErrorMessage
Attribute name: MessageName

Context Selector <CONTEXT SELECTORS=”ErrorMessage.
MessageName.EQ.RequiredField:TRUE”>

Table 12-5: Selectors Example 3
Chapter 12: Request Server 301

Understanding Request Context Mapping
Example 4

If you want to create a selector to place the country of a customer’s home address into the
mapping attribute, you could use the selector request parameter, HTTP Request parameter, and
context selector outlined in Table 12-6.

ENTITY VALUE

Selector
Request Parameter

ReqMapParamREQ2 = CustomerHomeCountry.LIT.

HTTP Request
Parameter

Request parameter name: CustomerHomeCountry

Context Selector <CONTEXT
SELECTORS=”CustomerHomeCountry.LIT.:USA”>

Table 12-6: Selectors Example 4
302 Foundation Server Developer’s Guide, release 5.7

Understanding Request Context Mapping
Understanding the Selectors Helper

The Selectors Helper looks for special, predefined name forms of servlet request parameters and
request attributes, and returns their processed values in a HashMap. A HashMap object is always
returned even though it might not contain any entries.

The SelectorsHelper class includes the following protected methods, used in this order, to
complete the evaluation of the expression:

• tryDateComparison

The tryDateComparison method attempts to convert the values to dates, using the
convertStringToDate method, and perform a date comparison. The result parameter contains
the comparison result as a the first array element, and returns a boolean with value true if the
conversions and comparison worked correctly.

• tryNumericComparison

The tryNumericComparison method attempts to convert the values to numerics and perform a
numerical comparison. The result parameter contains the comparison result as a the first array
element, and returns a boolean with value true if the conversions and comparison worked
correctly.

• doStringComparison

The doStringComparison method performs a comparison of two string values. The operator
specifies how to compare the strings, and the result is returned as a string, such as “TRUE.”
Table 12-2 on page 298 describes the operators available for use with the doStringComparison
method.

protected static boolean tryDateComparison(java.lang.String[] result,
java.lang.String operator, java.lang.String value,
java.lang.String comparator)

Code 12-7: tryDateComparison Method Signature

protected static boolean tryNumericComparison(java.lang.String[] result,
java.lang.String operator, java.lang.String value,
java.lang.String comparator)

Code 12-8: tryNumericComparison Method Signature

protected static boolean doStringComparison(java.lang.String[] result,
java.lang.String operator, java.lang.String value,
java.lang.String comparator)

Code 12-9: doStringComparison Method Signature
Chapter 12: Request Server 303

Understanding Request Context Mapping
HashTable Examples

This section offers examples of entries created within the HashTable for specific selectors.

Example 1

Assume the following incoming request parameter:

If there in an object in the HttpSession named Account that has a balance attribute with a value of
22501.63, the resulting HashMap entry would be:

Example 2

Assume the following request-parameter selector:

If an HttpRequest parameter with the name LoanAmount has the value of 345,000, the resulting
HashMap entry would be:

Example 3

Assume the following request-parameter selector:

If an HttpRequest attribute with the name Message has a name attribute with the value of
RequireField, the resulting HashMap entry would be:

Understanding the Device Context Mapper Helper

The SelectorsHelper class uses the Device Context Mapper Helper to create selector values that
identify devices based on the MIME type and user agent values.

The Device Context Mapper Helper collects candidate Device Contexts that have a MIME type
value that matches any of the MIME types from the accept header of the requesting device. The
Device Context Mapper Helper then returns the first candidate that has a matching user-agent
header value.

ReqMapParamSO1=Account.Balance.GTE.10000

key: Account.Balance.GTE.10000
value: TRUE

ReqMapParamREQ1=LoanAmount.LT.225000

key: LoanAmount.LT.225000
value: FALSE

ReqMapParamATTR1=Message.Name.EQ.RequiredField

key: Message.Name.EQ.RequiredField
value: TRUE
304 Foundation Server Developer’s Guide, release 5.7

Exploring the Primary Classes
Code Sample 12-10 illustrates a segment of a sample Device Context file.

Code 12-10: Sample Device Context Map

EXPLORING THE PRIMARY CLASSES

The Request Server provides a set of classes that implement a particular pattern for responding to
HTTP Requests. These classes fall into the following two categories:

• The RequestHander and the ChordiantServletBaseClass Servlet Classes

These classes implement the request handling pattern, processing the incoming request and
returning the response. For more information about the ChordiantServletBaseClass, see
“Using the ChordiantServletBaseClass” on page 307.

• The RequestContextMapperHelper and SelectorsHelper Classes

These classes provide the connection between the infrastructure and application-specific
features and functionality.

• The ApplicationInitializerServlet Class

The init method of the ApplicationInitializerServlet provides a initialization point for the
application and the associated infrastructure by calling the serviceControl method in the
Static Helper with the following parameter:

• The ChordiantSessionHelper Class

This is the default session helper implementation. The ChordiantSessionHelper class provides
methods for getting, creating, and removing sessions.

For more information about the ChordiantSessionHelper class, see “Using the Session Helper”
on page 310.

• The LoginHelper Class.

The LoginHelper class provides functionality for logging in and logging out users. The
LoginHelper class uses the Security Helper to authenticate the user name and password and
puts the user name and authentication token on the session.

For more information about the LoginHelper class, see “Using the Login Helper” on page 311.

<DEVICE>
<NAME>Nokia WAP Toolkit</NAME>
<DEVICE_TYPE>Developer's Tool Phone Simulator</DEVICE_TYPE>
<MIME_TYPE>text/vnd.wap.wml</MIME_TYPE>
<USER_AGENT_LIST>

<USER_AGENT>Nokia-WAP-Toolkit/2.1</USER_AGENT>
</USER_AGENT_LIST>
<MIME_SELECTOR_VALUE>WML</MIME_SELECTOR_VALUE>
<DEVICE_SELECTOR_VALUE>NokiaWAPToolkit</DEVICE_SELECTOR_VALUE>

</DEVICE>

StaticHelperBaseClass.SERVICE_CONTROL_COMMAND_SETUP
Chapter 12: Request Server 305

Exploring the Primary Classes
• The GenericDialogServerServlet Class

The GenericDialogServerServlet class provides generic and extensible handling of
dialogServer content. You can use the GenericDialogServerServlet in the following ways:

— As a generic class for handling interactions in the Foundation Server environment, in
situations where Chordiant Interaction Server displays are being used.

In this case, the GenericDialogServerServlet class extracts inputs from a Chordiant
Interaction Server display and preserves the inputs for the presentation context.

— To handle any non-Chordiant Interaction Server display inputs.

You can override the getInputs method to add any special processing that might be
required by the execute method.

For more information about how to use the GenericDialogServerServlet class, see “Integrating
Foundation Server with Chordiant Interaction Server” on page 326.

• The RegisterNetworkPresence Class

The implementation of the Thin Client command to register and deregister the Thin Client
network presence. The RegisterNetworkPresence class handles an HTTP Request by
completing:

— Checks the following request parameter to determine whether to register or
deregister.

— In the case of a request to register, the implementation retrieves the value of the
following two HTTP Request parameters:

The implementation then calls the NameServiceHelper.rebind method. If no exception
is thrown, the implementation sets the value of the HTTP Response contents to “true.”

— In the case of a request to deregister, the implementation retrieves the value of the
following HTTP Request parameter:

The implementation then calls the NameServiceHelper.unbind method. If no
exception is thrown, the implementation sets the value of the HTTP Response
contents to “true.”

REGISTER_NET_PRESENCE_PARAM_NAME

NETWORK_PRESENCE_KEY_PARAM_NAME

CONNECTION_URL_PARAM_NAME

NETWORK_PRESENCE_KEY_PARAM_NAME
306 Foundation Server Developer’s Guide, release 5.7

Exploring the Primary Classes
Using the ChordiantServletBaseClass

The ChordiantServletBaseClass supplies the basic functionality for the Application Logic
Resource servlets that you create when developing applications for Chordiant 5 Foundation
Server. By deriving your class from the ChordiantServletBaseClass, you can participate in the
Chordiant application server architecture and use the recommended patterns and common
capabilities.

You must implement the doService method and, optionally, the doPresentation method of any
classes that you derive from ChordiantServletBaseClass. For more information about the
execution flow of Foundation Server-based web applications, or about how to create web
applications, see “The Execution Flow” on page 285 and “Building Web Applications” on page 316
respectively.

In addition to the doService and doPresentation methods, you can use the following methods
within the ChordiantServletBaseClass when developing your servlets:

• getErrorMessageStringResource — This method retrieves an error message string from a
property resource file. You can use the getErrorMessageStringResource method to
incorporate custom error messages in your application. To do so, complete the following
steps:

— Create a PropertyResourceBundle class to load the properties file.

— Define the resource string name constants in the resource bundle class.

— Create a properties resource file with the error messages.

— Call the getErrorMessageStringResource method from your application to retrieve an
error message string.

The resourceBundleName is the name of the bundle in which the string is located, while
errorMessageResourceName is the key of the resource string.

Code Sample 12-12 illustrates a sample resource bundle class.

protected static java.lang.String
getErrorMessageStringResource(java.lang.String resourceBundleName,
java.lang.String errorMessageResourceName)

Code 12-11: getErrorMessageStringResource Method Signature

public class MyAppErrorMessagesResourceBundle extends PropertyResourceBundle {

protected final static
String ERROR_MESSAGES_RESOURCE_FILE_NAME =
"MyAppErrorMessagesResourceBundle.properties";
public MyAppErrorMessagesResourceBundle(InputStream stream)
throws IOException {

super(MyAppErrorMessagesResourceBundle.
class.getResourceAsStream
(ERROR_MESSAGES_RESOURCE_FILE_NAME));

 }

public final static String MY_ERROR_MESSAGE_EMRS =
"MyErrorMessageEMRS";

}

Code 12-12: Sample Resource Bundle Class
Chapter 12: Request Server 307

Exploring the Primary Classes
Code Sample 12-13 illustrates sample using the resource bundle class.

Code Sample 12-14 illustrates a properties resource file, stored in the
MyAppErrorMessagesResourceBundle.properties file:

Note that the format of the file consists of separate lines, each containing an entry of the form
name=message.

You should name the resource file the same as the resource bundle class file, and append the
extension “properties.” For example, you could use the following resource file name:
MyAppErrorMessagesResourceBundle.properties. When calling this method, pass in the full
package and class name as the resourceBundleName parameter.

• getRequestResults — This method retrieves an object from the request with the name defined
by the constant REQUEST_RESULTS_OBJECT_NAME. Typically, this is a Hashtable
containing result objects, such as data objects from the service APIs. However, the item
retrieved can be any object explicitly placed there by the application logic servlet, such as an
org.w3c.dom.Document, for example.

Note that the getRequestResults method creates a Hashtable if no object already exists.

• getSession — The getSession method uses the SessionHelper class to provide the method for
getting the session. For more information, refer to “Using the Session Helper” on page 310.

The getSession method uses the SessionHelper to get the HttpSession object for the request.
The method provides a single point for this class to access the session.

Code Sample 12-17 illustrates the use of the getSession method.

String errorMessage = getErrorMessageStringResource(
"com.mycodepackage.MyAppErrorMessagesResourceBundle",
MyAppErrorMessagesResourceBundle.MY_ERROR_MESSAGE_EMRS);

Code 12-13: Retrieving an Error Message

MyErrorMessageEMRS = This is my error message resource string.
AnotherErrorMessageEMRS = This another error message resource string.

Code 12-14: Sample Properties Resource File

protected static java.lang.Object
getRequestResults(javax.servlet.http.HttpServletRequest request)

Code 12-15: getRequestResults Method Signature

protected static javax.servlet.http.HttpSession
getSession(javax.servlet.http.HttpServletRequest request)

Code 12-16: getSession Method Signature

HttpSession session = getSession(request);
if (session != null) {

session.setAttribute(ResultsHelper.TAB_TO_SHOW,
ResultsHelper.MONITOR_TAB_LAYER_NAME);

}

Code 12-17: Using the getSession Method
308 Foundation Server Developer’s Guide, release 5.7

Exploring the Primary Classes
• getAuthenticationToken — The getAuthenticationToken method accesses the session object that
the LoginHelper added to the session when the user was successfully logged in. For more
information about the LoginHelper class, see “Using the Login Helper” on page 311.

Code Sample 12-19 illustrates the use of the getAuthenticationToken method.

• getUserNameFromSession — The getUserNameFromSession method accesses the session
object that the LoginHelper added to the session when the user was successfully logged in. For
more information about the LoginHelper class, see “Using the Login Helper” on page 311.

Code Sample 12-21 illustrates the use of the getUserNameFromSession method.

Note: We encourage you to use the addToResults (see page 312) and setResultObject
convenience methods to assist in processing request results.

public static java.lang.String getAuthenticationToken(
javax.servlet.http.HttpServletRequest request)

Code 12-18: getAuthenticationToken Method Signature

String authenticationToken = getAuthenticationToken(request);

Code 12-19: Using the getAuthenticationToken Method

public static java.lang.String getUserNameFromSession(
javax.servlet.http.HttpServletRequest request)

Code 12-20: getUserNameFromSession Method Signature

String userName = getUserNameFromSession(request);

Code 12-21: Using the getUserNameFromSession Method
Chapter 12: Request Server 309

Exploring the Primary Classes
Using the Session Helper

The SessionHelper class provides APIs for session management. The methods are defined by the
SessionHelperInterface. The methods in this class are passthroughs to an implementation of the
interface as defined by the configuration section CONFIG_SECTION_SESSION_HELPER and
the configuration item CONFIG_ITEM_SESSION_HELPER_INSTANCE. The SessionHelper class
ensures that the implementing class is instantiated when needed.

The ChordiantSessionHelper class is the default implementation of the Session Helper, offering
implementations of the following methods:

• ensureSessionExists — Determines if a session exists. If no session exists, the
ensureSessionExists method creates one. Note that you should call this method before any
output is written to the response.

The ensureSessionExists method returns false if a session could not be found or created.

• getSession — Retrieves the HttpSession object for the request. The getSession method does
not create a session if one does not already exist.

Code Sample 12-24 illustrates the use of the getSession method.

• removeSession — This method invalidates the session.

The removeSession method returns false if an error occurred while trying to invalidate the
session.

public boolean ensureSessionExists(javax.servlet.http.HttpServletRequest request)

Code 12-22: ensureSessionExists Method Signature

public javax.servlet.http.HttpSession getSession(javax.servlet.http.HttpServletRequest
request)

Code 12-23: getSession Method Signature

HttpSession session = getSession(request);
if (session != null) {

// Use the session information, as appropriate
}

Code 12-24: Using the getSession Method

public boolean removeSession(javax.servlet.http.HttpServletRequest request)

Code 12-25: removeSession Method Signature
310 Foundation Server Developer’s Guide, release 5.7

Exploring the Primary Classes
Using the Login Helper

The LoginHelper class provides the functionality for logging in and logging out users, and
includes implementations of the following methods:

• doLogin — Authenticates a user and puts the user name and authentication token on the
session. The doLogin method returns null if successful. Otherwise, if the user name and
password are not accepted, the doLogin method returns an error message.

Note that if the user name or password is null, the method returns a string with an error
message.

Code Sample 12-27 illustrates the use of the doLogin method.

• doLogout — This method logs a user out of the system, and invalidates the session. The
doLogout method throws the javax.servlet.ServletException and java.io.IOException.

Code Sample 12-29 illustrates the use of the doLogout method.

public static java.lang.String doLogin(javax.servlet.http.HttpServletRequest request)

Code 12-26: doLogin Method Signature

String errorMessage = LoginHelper.doLogin(request);

if (errorMessage != null) {
ApplicationUserMessage message = new ApplicationUserMessage();
message.setMessageName("LoginMessage");
message.setMessage(errorMessage);

// Make login failure message available to context mapper and JSP.
request.setAttribute("LoginMessage", message);
request.setAttribute("ReqMapParamATTR1",

"LoginMessage.MessageName.EQ.LoginMessage");
throw new GoBackException();

}
else {

// Perform some useful work
}

Code 12-27: Using the doLogin Method

public static java.lang.String doLogout(javax.servlet.http.HttpServletRequest request)
throws javax.servlet.ServletException, java.io.IOException

Code 12-28: doLogout Method Signature

errorMessage = LoginHelper.doLogout(request);

if (errorMessage == null) {
// Successfully logged out.
errorMessage = getErrorMessageStringResource(null,

ApplicationErrorMessagesResourceBundle.
LOGOUT_SUCCESS_MESSAGE);

}

Code 12-29: Using the doLogout Method
Chapter 12: Request Server 311

Understanding Application Logic Results
UNDERSTANDING APPLICATION LOGIC RESULTS

Application Logic Resources, specifically classes derived from ChordiantServletBaseClass,
designate their results (the data that is available for display or that is to be included in the
response to the request) by placing objects on the request as an HttpServletRequest attribute.

The ChordiantServletBaseClass defines the name of the request attribute,.

You can place objects on the request as an HttpServletRequest attribute using the base class
method addToResults method. You can use the addToResults method to collect multiple result
objects, as required.

The addToResults method creates a Hashtable for the container the first time this method is used
in each request. Code Sample 12-31 illustrates a sample use of the addToResults method.

Note: When using the addToResults method, you must not include any spaces in the
string you pass to the method. The string argument must consist only of letters
and underscores. Embedded spaces in the string produces unpredictable results.

Alternatively, you can place objects on the request as an HttpServletRequest attribute directly
through the HttpServletRequest.setAttribute method, using the attribute name as defined.

Using the HttpServletRequest.setAttribute method directly might be useful in cases where the
result object is an org.w3c.Document object, for example. Note that once an object other than a
Hashtable is set as the result object, no other objects can be added to the results.

Note: The org.w3c.Document is only supported by the ObjectTreeToDOM transform
type SimpleLiteral. For more information, see the ObjectTreeToDOM
configuration section in the TransformHelper.xml configuration file.

You can then use the getAttribute method to reference the Application Logic Result objects, on a
JSP page, for example, using this code.

ChordiantServletBaseClass.REQUEST_RESULTS_OBJECT_NAME

public static void addToResults(javax.servlet.http.HttpServletRequest request,
java.lang.String name, java.lang.Object object)

Code 12-30: addToResults Method Signature

Object someBusinessObject = doSomeBusinessLogic();
addToResults(request, "MyBusinessObject", someBusinessObject);

Code 12-31: Using the addToResults Method

request.getAttribute("RequestResults");
312 Foundation Server Developer’s Guide, release 5.7

Understanding Exception Handling
Examining the XML Instance Document

You can use the debugging features to examine the form of the XML instance document that is
produced when the presentation type for the current context is a server-side XSL transformation.
Alternatively, you can set the transform type of the presentation to client to have the XML
returned directly to the browser.

You can activate debugging for the TransformHelper component by creating a new log filter
configuration section. Code Sample 12-32 illustrates how to activate debugging for the
TransformHelper component. You might find it convenient to keep this new section in a separate
file that you can place in the configuration directory as needed.

Code 12-32: Activating the Debugger

UNDERSTANDING EXCEPTION HANDLING

You should include exception handling in your applications to make it easier for users to
determine when things are not functioning as expected, and to provide feedback on alternate
ways to complete their work.

The Request Server offers the following capabilities to help you include exception handling in
your applications:

• Pre-defined exceptions

• ErrorPage Action ID

• ErrorHandlingMechanism configuration parameter

<Root>
<Section>Log

<Tag>Filter
<Value>FilterTwo</Value>

</Tag>
</Section>
<Section>LogConfiguration

<Tag>LOG_DEBUG_ON
<Value>true</Value>

</Tag>
</Section>
<Section>FilterTwo

<Tag>filterclass
<Value>com.chordiant.core.log.LogFilter</Value>

</Tag>
<Tag>criteria

<Value>com.chordiant.core.transform</Value>
</Tag>
<Tag>level

<Value>debug</Value>
</Tag>
<Tag>writer

<Value>com.chordiant.core.log.LogWriterStandardOut</Value>
</Tag>

</Section>
</Root>
Chapter 12: Request Server 313

Understanding Exception Handling
Table 12-7 describes the types of exceptions available when developing web applications.

To include exception handling in your application:

1. Include logic in your servlet to detect errors, as appropriate.

2. In the case of errors that can be remedied through user intervention, include code in your
servlet to throw a GoBackException.

Throwing a GoBackException instructs the system to re-display the current page, enabling
users to modify inputs to the page, or perform other operations to remedy the error. For
example, in the case of invalid input, the system can display an error message and offer users
an opportunity to retry the operation using different data.

3. When using a GoBackException, include logic within the page to handle displaying error
messages.

You must also store any error messages on the session or request before throwing the
GoBackException. The system does not store error messages; your application is responsible
for performing this work.

EXCEPTION DESCRIPTION

GoBackException Throw this exception when your application
detects an error that can be remedied by
returning to the previous page. Note that if
a page is likely to be the target of a
“GoBack,” you must code the page to
handle displaying error messages and
related functionality.

SendErrorException Throw this exception when your application
detects an unrecoverable error. When you
throw the SendErrorException, the system
invokes error handling routines.

Alternatively, you can invoke the sendError
method, which throws the
SendErrorException, to handle an
unrecoverable error.

Table 12-7: Web Application Exceptions
314 Foundation Server Developer’s Guide, release 5.7

Understanding Exception Handling
4. Check whether a servlet is being invoked because of a GoBackException.

The Request Server offers the following flag available on the session object enabling you to
determine if the servlet is being invoked because of a GoBackException.

The flag is null in cases when the servlet is not being invoked as part of a GoBackException.

Your servlet should check whether it is being called as part of a GoBack operation. The
Request Server detects the case of an attempt to GoBack while handling an existing GoBack
operation. If this is the case, the system invokes the ErrorPage Action ID. By checking for this
condition within your servlet, you can modify the way in which the condition is handled.

You can use code similar to Code Sample 12-33 to determine whether the servlet is being
invoked through a GoBackException.

5. In the case of unrecoverable errors, include code in your servlet to throw a
SendErrorException.

Alternatively, you can invoke the SendError method to throw the exception. The SendError
method packages the error message and the error code on to the exception before it is thrown.

6. When using a SendErrorException, your application should define a custom servlet for the
ErrorPage Action ID.

The system provides a pre-defined ErrorPage Action ID that invokes a simple servlet to
display an error message to the browser listing the attributes and parameters stored on the
session and request objects.

You can define your own ErrorPage Action ID in the Context Map file to override this servlet
to perform actions more appropriate for your application. For example, in the case of a severe
error, your application could display the initial login screen with a message instructing users
about the nature of the error and requesting them to login and start over.

ChordiantServletBaseClass.HANDLING_GO_BACK_FLAG_SESSION_OBJECT_NAME

Boolean doingGoBack = theSession.getAttribute(
ChordiantServletBaseClass.HANDLING_GO_BACK_FLAG_SESSION_
OBJECT_NAME);
. . .
// Perform parameter validation, if required
if (!isValidNumber(inputValue)) {

// Check whether we are performing a GoBack
if (doingGoBack != null && doingGoBack.booleanValue()) {

// Process the field as needed, but don't throw a
// GoBackException.

}
else { // Not handling a GoBack; perform normal error handling

// Process as an error, and throw GoBackException if required
}

}

Code 12-33: Determining if GoBackException is Used
Chapter 12: Request Server 315

Building Web Applications
7. When using a SendErrorException, optionally configure the ErrorHandlingMechanism.

The ErrorHandlingMechanism parameter is in the WebToolkit.xml configuration file, and
enables you to control the behavior of the handleSendErrorException method. The following
are the valid values for the ErrorHandlingMechanism parameter:

— ErrorPage: Forwards the request to the ErrorPage Action ID.

— SendError: Uses the response.sendError method to report errors to the browser. The
response.sendError method enables you to display generic browser error messages.

8. When overriding the doPresentation method of the ChordiantServletBaseClass, save the
current Action ID as the GoBack target and clear the GoBack session object.

You can override the doPresentation method to implement customized presentation handling.

Code Sample 12-34 illustrates how to save the current Action ID and clear the GoBack session
object.

BUILDING WEB APPLICATIONS

Chordiant provides an advanced infrastructure for creating web applications: the Request Server.
When developing a web application, you must complete a series of steps related to planning the
business operations and services, designing the flow of the application, and programming to the
available interfaces.

This section describes the following topics related to building web applications to run on the
Foundation Server:

• “Understanding Developer Goals” on page 317

• “Example of Building an Application Logic Resource” on page 319

// Save the request for go back and clear the flag to show we're NOT
// in the midst of doing a 'go back'.
HttpSession theSession = getSession(request);
if (theSession != null) {

theSession.setAttribute(
PREV_ACTION_ID_SESSION_OBJECT_NAME, actionID);

theSession.removeAttribute(
HANDLING_GO_BACK_FLAG_SESSION_OBJECT_NAME);

}

Code 12-34: Saving the Action ID and Clearing the GoBack Session Object
316 Foundation Server Developer’s Guide, release 5.7

Building Web Applications
Understanding Developer Goals

Before you begin creating your web application, you should complete a series of steps related to
determining the required business services and mapping them the application logic that will
appear in your application code.

Table 12-8 outlines the developer goals and procedures for creating web applications for
Foundation Server. Refer to the Chordiant 5 Tools Platform Getting Started Guide for more
information.

DEVELOPER GOAL PROCEDURE

Creating new and customized
business services

You should complete the following tasks:
• Analyze the Enterprise Offerings and

Business Processing Rules
• Identify the required business objects and

Business Services
• Develop new (or customize existing)

Business Services

Creating Action IDs You should complete the following tasks:
• Analyze the Enterprise Offerings and

Business Processing Rules
• Identify the required business objects and

Business Services
• Combine information to create preliminary

Application Logic Resources, including
identification of the inputs and outputs,
and proposed names

• Create the new Application Logic Resource
in Java

Creating Java Client Agents You must complete the following tasks:
• Analyze the Enterprise Offerings and

Business Processing Rules
• Identify the required business objects and

Business Services
• Create the Java Client Agents for new

Business Services with stubbed APIs
• Create Java Client Agents for new

Business Services

Table 12-8: Developer Goals
Chapter 12: Request Server 317

Building Web Applications
Create the Request Context Map
file

You should complete the following tasks:
• Analyze the Enterprise Offerings and

Business Processing Rules
• Identify the offerings
• Create the HTML storyboard (page flow)
• Identify necessary Application Logic

Resources names for each page transition
• Identify necessary Action IDs and

mapping attributes
• Convert the HTML to XSL, and create an

HTML storyboard in preliminary XSL form
(with references to sample XML data)

• Test and modify the graphical user
interface using Internet Explorer 5.5 or
higher

• Identify top-level XSL file names
• Enter the following information where

appropriate into the Request Context Map
file: Action IDs and mapping attributes,
Application Logic Resources, top-level XSL
file names

Create the HTML storyboard in
final XSL form (with references
to final XML contexts or data
templates)

You should complete the following tasks:
• Analyze the Enterprise Offerings and

Business Processing Rules
• Create the HTML storyboard (page flow)
• Convert the HTML to XSL, and create an

HTML storyboard in preliminary XSL form
(with references to sample XML data).

• Test and modify the graphical user
interface using Internet Explorer 5.5

• Modify the references to the final XML
data templates, if required

• Combine the XML data templates to create
the final HTML storyboard

DEVELOPER GOAL PROCEDURE

Table 12-8: Developer Goals (Continued)
318 Foundation Server Developer’s Guide, release 5.7

Building Web Applications
Example of Building an Application Logic Resource

This section illustrates the steps you can follow to create an application logic resource for a single
Action ID for use with Chordiant 5 Foundation Server.

To build a application logic resource:

1. Create your Application Logic Resource.

If you are creating a servlet, define a class that extends the ChordiantServletBaseClass. Code
Sample 12-35 illustrates how you can extend the ChordiantServletBaseClass.

If you are creating a JSP page, you can skip forward to Step 7 on page 320 since you do not
need to override methods in the ChordiantServletBaseClass, nor do you need to create a
separate presentation resource, since this is handled in your JSP page.

2. Override the doService method in your derived class, and implement your application logic
in this method.

The service method in the ChordiantServletBaseClass invokes the doService method.

3. Use the addToResults method in your doService method to put results in the
HttpServletRequest.

Putting result objects in the HashTable object on the HttpServletRequest enables the
application resource logic to make the objects available to the presentation resource. Code
Sample 12-36 illustrates how you can put results in the HttpServletRequest using the
addToResults method.

For more information about using the addToResults method, see “Understanding Application
Logic Results” on page 312.

4. Optionally, override the doPresentation method in your derived class, and implement the
presentation handling.

In most cases, you can rely on the code in the ChordiantServletBaseClass to perform the
standard presentation services using the Presentation Context defined for the Action ID in the
Context Map.

package com.mywebapp;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.chordiant.application.ChordiantServletBaseClass;

public class myService extends ChordiantServletBaseClass {
 . . .
}

Code 12-35: Extending the ChordiantServletBaseClass

public void service(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

addToResults(request, "TestString", "It works!");
}

Code 12-36: Using the addToResults Method
Chapter 12: Request Server 319

Building Web Applications
5. Implement the exception handling for the Application Logic Resource.

The Request Server provides two pre-defined exceptions: the GoBackException and the
SendErrorException. You should use the GoBackException for errors that users can resolve by
returning to the previous page, and the SendErrorException or severe errors that perhaps
requires further processing.

For more information about handling exceptions in your web applications, see
“Understanding Exception Handling” on page 313.

6. Create a Presentation Resource.

A presentation resource can be an XSL stylesheet, an HTML page, a JSP page, a servlet, an
XML-formatted page, or dialogServer content.

For example, you can create an XSL stylesheet to serve as the Presentation Resource. Code
Sample 12-37 is an example of an XSL stylesheet.

7. Create the Context Map for the application.

You specify the actions implemented by your application using the XML-based Request
Context Map file. For each action, you can specify one or more contexts containing
information about the Application Logic Resource, Presentation Resources, and Transform

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="*"/>
<xsl:template match="ROOT_ELEMENT">

<!-- !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" -->

<html>
<head>

<title>ShowThinger</title>
</head>

<body bgcolor="White" leftmargin="0" topmargin="0" marginwidth="0" marginheight="0">

<xsl:value-of select="TestString"/>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Code 12-37: Sample XSL Stylesheet
320 Foundation Server Developer’s Guide, release 5.7

Building Web Applications
Types. Save the Context Map using the file name ContextMap.xml. You must include a
description and mapping of the Application Logic Resource in the web.xml file. See Step 10
on page 323.

Code Sample 12-38 illustrates a sample Request Context Map file:

Note that in the sample, the first <CONTEXT> element contains an Application Logic
Resource reference to the servlet implementing the action. The second context sets the value of
the Presentation resource to an XSL stylesheet that describes how to prepare the HTML output
for the web browser.

For more information about creating the Context Map file, see “Exploring the Request Context
Map” on page 291.

8. Use selectors to define alternative presentation contexts, if required.

For example, you could define an alternative presentation context using a selector called
SIZE1, based on an object within your application called myThinger. Code Sample 12-39
illustrates additions you can make to the Context Map to define the selector:

For more information about defining selectors, see “Understanding Selectors and the Selectors
Helper” on page 296.

<?xml version="1.0" encoding="UTF-8"?>
<ROOT>

<ACTION_ID>
RetrieveThinger
<CONTEXT>

<NAME>DEFAULT</NAME>
<APP_LOGIC>/RetrieveThingerServlet</APP_LOGIC>

</CONTEXT>
<CONTEXT>

<!--
Default presentation - i.e., basic server-side XSL transformation.
-->
<NAME>DEFAULT</NAME>
<PRESENTATION>xsl/ShowThinger.xsl</PRESENTATION>

</CONTEXT>
</ACTION_ID>

</ROOT>

Code 12-38: Sample Request Context Map File

<CONTEXT SELECTORS="myThinger.Size.EQ.1:TRUE">
<!-- Context for alternate presentation -->
<NAME>SIZE1</NAME>
<PRESENTATION>xsl/ShowThinger2.xsl</PRESENTATION>

</CONTEXT>

Code 12-39: Defining a Selector
Chapter 12: Request Server 321

Building Web Applications
9. Use the Chordiant Application Administrator to flush the Chordiant system cache.

You must flush the Chordiant system cache, using the Chordiant Application Administrator,
after you make modifications to any of the following:

— Request Context Map

— Device Context Map

— Any XSL file

You can use following commands, passed as query parameters to the Chordiant Application
Administrator servlet, to administer the Application Server (note that the equals sign is
required). You can also use the JX Admin application to initiate these same commands.

— Flush Templates

Flushes the cache of XSL Transformation Templates. To issue the Flush Templates
command, use the following URL:

— Flush Request Context Map

Flushes the Request Context Map from memory. To issue the Flush Request Context
Map command, use the following URL:

— Flush Device Context Map

Flushes the Device Context Map from memory. To issue the Flush Device Context
Map command, use the following URL:

— Help

Displays the usage patterns for the commands. To issue the Help command, use the
following URL:

http://[web _server_name]/servlets/com.chordiant.application.
ApplicationAdminstrator?FlushTemplates=

http://[web_server_name]/servlets/com.chordiant.application.
ApplicationAdminstrator?FlushRequestContextMap=

http://[web_server_name]/[applicationname]/servlets/com.chordiant.application.
ApplicationAdminstrator?FlushDeviceContextMap=

http://[web_server_name]/servlets/com.chordiant.internet.servlets.
CCSWebServerAdminServlet?Help=
322 Foundation Server Developer’s Guide, release 5.7

Building Web Applications
10. Modify the web.xml file.

The Web.xml application descriptor file enables you to supply application description
information to the application server. Table 12-9 outlines the elements that you should modify
in the web.xml file.

ELEMENT DESCRIPTION

<display-name> Set the value to the name of your application.

<description> (Optional) A description of your application. Note that the
Request Server does not use this parameter.

<context-param> <param-name> and
<param-value>

Set the <param-name> element
to “application-name”, and the
<param-value> to the name of
your application. The Request
Server uses this value to
determine the application name.

You can optionally add an
additional context parameter to
turn off device context mapping
by setting the <param-name>
element to UseDeviceMapping,
and setting the <param-value>
element to “false”

<description> (Optional) Set this value to
describe the specific
<context-param>.

<servlet> The section that describes the servlet referred to in the
ContextMap.xml document.

<servlet-name> The name of the servlet.Must be
identical to the name used in the
ContextMap.xml document.

<description> (Optional) Set this value to
describe the specific
<servlet-name>.

<servlet-class> The fully-qualified path to the
servlet class. For example,
com.hello.world.application.
HelloWorld

Table 12-9: Web.xml Parameters
Chapter 12: Request Server 323

Building Web Applications
The Web.xml file also contains references to the ApplicationInitializer and the RequestHandler
servlets.

The application initializer servlet initializes the Request Server and is set to load on startup.
This servlet provides an initialization point for the application and the associated
infrastructure. So it is important that at least one web application in the EAR has this servlet
set to preload. For example, see the sample Web.xml file in Figure 12-41 on page 325.

The Web.xml file describes the servlet used in the ContextMap.xml file and creates a
mapping of its URL pattern.

Code Sample 12-40 illustrates how you can use the Web.xml file to specify the location of the
Context Map file for your application.

<servlet-mapping> The section that describes the mapping for the servlet in
the <servlet> section above.

<servlet-name> The name of the servlet.Must be
identical to the servlet name
specified in the <servlet> section
above

<url-pattern> The fully-qualified relative name
that will invoke the servlet.

<context-param>
<param-name>RequestContextMapFileURI</param-name>
<param-value>file:C:\JX\MyWebApp\ContextMap.xml</param-value>
<description>
The initialization parameter specifying the location of the context map.
</description>

</context-param>

Code 12-40: Specifying the Context Map File in Web.xml

ELEMENT DESCRIPTION

Table 12-9: Web.xml Parameters (Continued)
324 Foundation Server Developer’s Guide, release 5.7

Building Web Applications
Code Sample 12-41 illustrates a segment of a sample Web.xml configuration file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>

<display-name>My Web Application</display-name>
<description/>
<context-param>

<param-name>application-name</param-name>
<param-value>My Web Application</param-value>
<description>

The name of the application - basically, a way to get
to the display-name from the servlets.

</description>
</context-param>
<context-param>

<param-name>UseDeviceMapping</param-name>
<param-value>false</param-value>
<description>

A flag to specify whether to use
the device context selectors.
This overrides the component configuration
file setting on a per-application basis.

</description>
</context-param>
<!-- Begin Application Initializer Servlet -->
<servlet>

<servlet-name>ApplicationInitializer</servlet-name>
<description>

This servlet provides a initialization point for…
</description>
<servlet-class>

com.chordiant.application.ApplicationInitializer
</servlet-class>
<!-- Load this servlet at server startup time -->
<load-on-startup>5</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>
ApplicationInitializer

</servlet-name>
<url-pattern>

/InitApp
</url-pattern>

</servlet-mapping>
<!-- End Application Initializer Servlet -->
<!-- Begin Request Handler Servlet -->
<servlet>

<servlet-name>RequestHandler</servlet-name>
<description>

This servlet is the controller that handles…
</description>
<servlet-class>

com.chordiant.application.RequestHandler
</servlet-class>

</servlet>

Code 12-41: Sample Web.xml Configuration File
Chapter 12: Request Server 325

Integrating Foundation Server with Chordiant Interaction Server
11. Compile the servlet.

INTEGRATING FOUNDATION SER VER WITH CHORDIANT
INTERACTION SERVER

You can integrate Chordiant 5 Foundation Server applications with Chordiant Interaction Server
and Chordiant Interaction Designer to streamline the way you create web-based forms and
process business information submitted using these forms.

Using data model descriptions encoded with XML Schema Definitions (XSDs) and Java classes,
Chordiant 5 Foundation Server enables you to easily interpret and repurpose information
contained in either XSD instances or Java instances.

You can also use Chordiant Interaction Server to map XSDs to web-based forms, and integrate
information submitted through these forms with your applications using the
GenericDialogServerServlet and the dialogServer Transform Type.

<servlet-mapping>
<servlet-name>

RequestHandler
</servlet-name>
<url-pattern>

/req
</url-pattern>

</servlet-mapping>
<!-- End Request Handler Servlet -->

<!-- Begin Hello World Servlet -->

<servlet>
<servlet-name>HelloWorldServlet</servlet-name>
<description>
</description>
<servlet-class>

com.hello.world.application.HelloWorld
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>

HelloWorldServlet
</servlet-name>
<url-pattern>

/HelloWorldServlet
</url-pattern>

</servlet-mapping>
</web-app>

Code 12-41: Sample Web.xml Configuration File (Continued)
326 Foundation Server Developer’s Guide, release 5.7

Integrating Foundation Server with Chordiant Interaction Server
To integrate Chordiant Interaction Server with Chordiant 5 Foundation Server applications
(general summary):

1. Create the XSD and Java class files using Rational Rose. Note that the Business Component
Generator will automatically create the XSD and Java class files from your object model. Refer
to the Chordiant 5 Foundation Server Application Components Developer’s Guide for details.

2. Create the web-based form using Chordiant Interaction Designer, based on the XSD you
created earlier.

3. Within the Context Map, specify the web-based form you generated using Chordiant
Interaction Designer as the Presentation and dialogServer as the Transform Type for the
appropriate context.

Code Sample 12-42 shows the context within the Context Map for the application that you can
use to engage the Chordiant Interaction Server to generate the appropriate HTML output.

4. Subclass the GenericDialogServerServlet to process the Chordiant Interaction Server form
input, and override the execute method in your derived class.

The Chordiant Interaction Server passes the document object to the execute method, enabling
you to get access to the information submitted through the web-based form.

You can use the execute method to perform special processing that could include the
following:

— Saving user inputs in the session for use by other servlets

— Updating or retrieving database information

— Saving data in the results field of the request object for use by the presentation context

In the execute method signature, obj is the user input obtained using the getInputs method:

This getInputs method extracts inputs from a Chordiant Interaction Server display and returns
them as an org.w3c.dom.Document object. You can override the getInputs method by an
extending class to handle inputs from non-Chordiant Interaction Server display.

<CONTEXT>
<NAME>DEFAULT</NAME>
<APP_LOGIC>/ChordiantServletBaseClassServlet</APP_LOGIC>
<PRESENTATION>/presentations/html/customer_info.htm</PRESENTATION>
<TRANSFORM_TYPE>dialogServer</TRANSFORM_TYPE>

</CONTEXT>

Code 12-42: Specifying Chordiant Interaction Server in the Context Map

public void execute(java.lang.Object obj,
com.chordiant.application.HttpServletRequest request,
com.chordiant.application.HttpServletResponse response)

Code 12-43: execute Method Signature

public java.lang.Object getInputs(
com.chordiant.application.HttpServletRequest request)

Code 12-44: getInputs Method Signature
Chapter 12: Request Server 327

Integrating Foundation Server with Chordiant Interaction Server
Code Sample 12-45 illustrates how to use the default behavior of the
GenericDialogServerServlet to process the form input, in this case returning the form input as
XML:

The getBusinessObject method is a powerful way to obtain Java objects, for example,
business objects, directly from the user inputs (that is, the XML instance created from the CIS
form by the CIS engine). The parameters are:

— the XML user inputs in XML instance document form

— the XPath that identifies the node that contains the desired business object instance
description

You can then optionally perform additional operations, such as updating information, using
this data from the business object.

5. Optionally, you can initialize a Chordiant Interaction Server form with a business object by
setting it as the result of the application logic, and using the dialogServer Transform Type.

When the transformation type for the presentation context is dialogServer, Chordiant 5
Foundation Server uses the request result object of the application logic resource as
initialization data in the presentation. This is performed in the ChordiantServletBaseClass by
first transforming the object to its XML representation and then providing the representation
to the Chordiant Interaction Server engine as initialization data.

The Chordiant Interaction Server engine uses the XSDs with which the HTML form was
designed to map the nodes of the XML representation to the fields in the form.

Note: For examples of how to integrate Chordiant 5 Foundation Server with Chordiant
Interaction Server, see the source code for the ColorShape and Harmony Bank
sample implementations.

<CONTEXT>
<NAME>DEFAULT</NAME>
<APP_LOGIC>/GenericDialogServerServlet</APP_LOGIC>
<PRESENTATION/>

</CONTEXT>

Code 12-45: Using the Default Behavior of the GenericDialogServerServlet
328 Foundation Server Developer’s Guide, release 5.7

Chapter 13
Network Presence
Thin-client applications can receive asynchronous events from services or other applications in the
same manner that applications send requests to services. This is achieved by establishing a
Network Presence and registering for events. The complete infrastructure for enabling a thin
client for Network Presence is provided by a variety of Java classes, XSL, and some JavaScript.

CONTENTS OF THE NETWORK PRESENCE IN THE BROWSER

The Network Presence component was designed to be very lightweight, to keep content size and
load time to a minimum and to keep application and business functionality on the server. The
Network Presence component minimally requires just three pieces of code: HTML to contain the
applet, the applet itself, and Java Script.

The sample AppletFrameSource.xsl, Code Sample 13-1 on page 333, shows the parameters
that are required in an HTML frame to contain the presence. The AppletFrameSource.xsl file
is not provided in the Chordiant base code. You must provide the HTML, JSP, or JavaScript,
including the specified parameters to interface with your specific application.

The AppletFrameSource.xsl references, and causes to be loaded, the other two components
which are included in the Chordiant base code:

• the Java Scripts file (NWP_API.js, size =3KB)

• the applet JAR file (NWPThinClient.jar, size =37KB).

Refer to the “JavaScript-Function Event Handlers” on page 334 for a description of how to add
handlers for the incoming, asynchronous events. When designing handlers, try to stay consistent,
keeping the browser contents to a minimum and keeping the application and business logic on the
servers, typically by dispatching HTTP requests, rather than writing a lot of Java Script.
329

Establishing a Network Presence
ESTABLISHING A NETWORK PRESENCE

The Network Presence for the thin client is embodied in the applet class
com.chordiant.application.thinclient.NetworkPresenceBaseClass. Applets have a life cycle that is
driven by the browser. When the page containing an applet is first displayed, the init method is
invoked. The applet uses this event to generate a network presence key and register with the name
service of the J2EE Application Server (JNDI). When the applet is destroyed, the Network
Presence is automatically deregistered.

Note: The Java Console loaded on client machines must match, or be close to, the
version of the JRE used by the application server. If the versions are not
synchronized, the client application will display a “security error” message.
The Java Console on the application server will show security/permissions
exception error messages stating that the browser was unable to create the
network presence socket server.

Register and Deregister Requests

The SendRegisterNetworkPresenceCommand method is automatically called from the applet init
method and always creates a new socket server. (You can specify the listen port for the socket
server or it can be automatically determined by the Operating System to some available port.) If
successful, it attempts to establish a Network Presence by sending an HTTP Request to the
Request Handler with the Action ID value of RegisterNetworkPresence.

Figure 13-1: Establishing Network Presence from a Browser
330 Foundation Server Developer’s Guide, release 5.7

Establishing a Network Presence
The context mapped to this ID references the Application Logic Resource servlet class
com.chordiant.application.RegisterNetworkPresence.

The request provides the following HTTP request parameters:

• ActionId=RegisterNetworkPresence

• Register=register

• networkPresenceKey — A network presence key

The networkPresenceKey is a string used to identify a particular network presence. It is
created in the applet init method.

The format of the networkPresenceKey is UN_BIPA_BPID, where:

— UN:The username

— BIPA: The browser’s IP address

— BPID: The browser’s process ID

• connectionURL — The URL connection parameter.

The connectionURL is a string that describes how to connect back to the Network Presence.

The format of the string is socket://BIPA:BSN, where:

— BIPA: The browser’s IP address, obtained from an applet initialization parameter

— BSN: The browser’s socket server port number, obtained from the SocketServer

The HTTP request is directed at the Request Handler for the web application context which
vended the current page. If the register command fails, either with an error or as indicated by the
String value “false” being returned in the HTTP response, the socket server is shut down. The
return value is the contents of the HTTP response, typically “true” if successful and “false”
otherwise.

The HTTP Request provides information sufficient for the servlet to successfully register the
applet as a Network Presence. Some of the required information is obtained from applet
initialization parameters.

The SendDeregisterNetworkPresenceCommand method is automatically called from the applet
destroy method. The method sends an HTTP request and provides two request parameters:
ActionId=RegisterNetworkPresence and Register=deregister. The method always shuts down the
socket server, regardless of the contents returned in the request response.

<ACTION_ID>
RegisterNetworkPresence
<CONTEXT>

<NAME>DEFAULT</NAME>
<APP_LOGIC>/RegisterNetworkPresenceServlet</APP_LOGIC>
<!-- No Presentation is required as servlet will create

 response contents and not call super.service(). -->
</CONTEXT>

</ACTION_ID>
Chapter 13: Network Presence 331

Establishing a Network Presence
The Applet HTML Frame

The applet defines the names of applet initialization parameters that are required for Network
Presence. Their values are provided by the servlet that vends the page containing the applet
frame. The Network Presence Tester application’s
com.chordiant.application.nwptester.servlets.BuildAppletFrameResults servlet and
AppletFrameSource.xsl resources work together to create an HTML page that provides the
required information. The file AppletFrameSource.xsl is a stylesheet that transforms the
results of the servlet into an HTML page with the necessary structure and information.

Required Applet Initialization Parameters

USER_NAME_APPLET_INIT_PARAM – “UserName” (industry standard)

USER_AUTH_TOKEN_APPLET_INIT_PARAM – “AuthenticationToken” (industry
standard)

CLIENT_IP_ADDR – “ClientIPAddr” (Chordiant-specific)

These parameters are also described in the Javadoc for the NetworkPresenceBaseClass,
located in the com.chordiant.application.thinclient package.

Optional Applet Initialization Parameters

LOGGING_ON_PARAM_NAME – “LoggingOn” – ‘true’ or ‘false’

SOCKET_PORT_PARAM_NAME – “SocketPort”

Specifies the socket port number to use for listening for callbacks. Zero, or the absence
of the parameter, means the operating system should select an available port.

If the requested port is unavailable, or some other error prevents the SocketServer
from successfully initializing, a JavaScript alert is displayed, an error message is
displayed in the status bar (if the status bar is available in the browser), and error
messages with additional information are written to the Java console.

Debugging information is written to the Java console.
332 Foundation Server Developer’s Guide, release 5.7

Establishing a Network Presence
Code Sample 13-1 shows a sample AppletFrameSource.xsl with the required parameters.

Note: This is a sample file. Chordiant does not provide this file in the code base. You
must create your own HTML to encapsulate this information, including the
required parameters described in “Required Applet Initialization
Parameters” on page 332, for your own application.

<html>
<head>

<title>Network Presence Applet Frame</title>
<script type="text/javascript" language="javascript" src="../NWP_API.js">

<xsl:comment>this comment required to workaround bug in IE </xsl:comment>
</script>

<body>
<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

id="NetworkPresenceApplet"
name="NetworkPresenceApplet"
width="0" height="0"
codebase="http://java.sun.com/products/plugin/1.3/jinstall-13-win32.cab#Version=1,3,0,0">
<param name="code" value="com.chordiant.application.thinclient.NetworkPresenceBaseClass.class"/>
<param name="archive" value="/A_NWP_Tester//NWPThinClient.jar"/>
<param name="type" value="application/x-java-applet;version=1.3"/>
<param name="scriptable" value="true"/>
<param name="MAYSCRIPT" value="true"/>
<param name="LoggingOn" value="true"/>

<!-- 'SocketPort' param value specifies the desired port number.
Zero (or absence of param) means let the OS choose. -->

<!-- <param name="SocketPort" value="0"/> -->

<param name="UserName">
<xsl:attribute name="value">

<xsl:value-of select="UserName"/>
</xsl:attribute>

</param>

<param name="AuthToken">
<xsl:attribute name="value">

<xsl:value-of select="AuthToken"/>
</xsl:attribute>

</param>

<param name="ClientIPAddr">
<xsl:attribute name="value">

<xsl:value-of select="ClientIPAddr"/>
</xsl:attribute>

</param>

Code 13-1: AppletFrameSource.xsl
Chapter 13: Network Presence 333

Establishing a Network Presence
JavaScript-Function Event Handlers

The Network Presence applet implements the SocketServerRequestHandler interface, which
requires it to provide a single method, processRequest1. This is the method the socket server calls
when data is received through the socket connection. The Network Presence applet’s
implementation is the entry point for all asynchronous calls. The incoming data is in payload form
and contains the event class (service name) and event user data2.

The processRequest method calls the networkPresenceEventHandler method
(NWP_API.js) which dispatches the event and event data to the registered JavaScript handler
function.

Applications register JavaScript functions with the Network Presence client to provide
functionality for responding to the events. Registration is achieved by calling the JavaScript
function registerEventHandler (in NWP_API.js).

The processRequest method parses the incoming event data and calls the JavaScript function
with four parameters.

• eventClass – event or service name (also used to map to the handler function)

• eventData – function name

• eventDataFormat – DEPRECATED and no longer used.

• eventUserData – contains the complete contents of the event in payload data form.

1. Note that the data formatting rules for the “payload” that is sent to and returned from the network presence
processRequest method is exactly the same as the PayloadData rules for the Chordiant EJB (SOAP-encoded
XML). Detailed information on PayloadData can be found in “Passing Payload with PayloadData” on page 140.

2. If the value of the eventUserData is "PING", the applet immediately returns an acknowledgement using
payload data predefined by the com.chordiant.service.constants.ServiceConstants. No JavaScript handler
functions are called.

<body onload="top.appletFrame.registerEventHandler('PeerMessageClientAgent',
IncomingChatMessageEventHandler);>

function IncomingChatMessageEventHandler(eventClass, eventData, eventDataFormat,
eventUserData)

{
// perform application-specific functionality
alert("inside the IncomingChatMessageEventHandler, with eventClass = " +

eventClass +
", eventUserData = " + eventUserData + ", eventDataFormat = " +

eventDataFormat +
", and eventData = " + eventData);

// parse the payload data and get the message text to be displayed
var theData = parseEventData(eventData);
334 Foundation Server Developer’s Guide, release 5.7

Establishing a Network Presence
Code Sample 13-2 shows these four parameters:

Event handler functions must return a SOAP-encoded XML String containing a PayloadData
object. An empty return value will cause a socket read error. Refer to the com.chordiant.
service.constants.ServiceConstants class for two methods that build an appropriately formatted
response String value.

Optionally, an application can designate a single handler rather than registering individual
handler functions by providing the function networkPresenceEventHandler(eventClass,
eventData, eventDataFormat, eventUserData) and not include the NWP_API.js file. In this case,
the application would not use the register and deregister JavaScript methods. Instead, it would
completely take over callback handling in any way it sees fit.

Serial ized Events

While NWP events coming into the browser can occur in parallel, dispatching events to the
JavaScript handler functions is serialized because thin clients are not able to coordinate multiple
simultaneous callbacks safely. Therefore, your JavaScript functions for handling NWP events
should be very fast in their processing and should never perform blocking operations, such as
modal dialogs.

Get the serviceName and functionName parameters of the PayloadData.
If this is a ping request (that is, function name is 'Ping'), return OK message and do no
event dispatching.
Otherwise the request must get routed (one event thread at a time) to the specified
callback handler JavaScript method.

args[0] = eventClass;
args[1] = data;
args[2] = payloadFormat;
args[3] = applicationUserData;
callResult = appletWindowJSObject.call(

"networkPresenceEventHandler", args);

Allow next event thread to continue.
Send return value from JavaScript method back to sender of NWP event.

Code 13-2: processRequest Method Pseudocode
Chapter 13: Network Presence 335

Establishing a Network Presence
Payload Data

The structure of event data is SOAP-encoded XML. The root element contains a single “payload”
object. Java code can create the required form by instantiating a
com.chordiant.service.PayloadData object and then using the TransformHelper to serialize the
object into XML. Code Sample 13-3 illustrates a sample XML document:

<?xml version='1.0' encoding='UTF-8'?>
<root

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'>
<payload id='id0'

xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:PayloadData'>
<fieldData id='id1'

xmlns:ns1='http://www.themindelectric.com/collections/'
xsi:type='ns1:vector'>

<item id='id2'
xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>
<fieldName xsi:type='xsd:string'>name of data item goes here</fieldName>
<fieldData xsi:type='xsd:string'>value of data item goes here</fieldData>

</item>
<item id='id3'

xmlns:ns1='http://www.themindelectric.com/package/com.chordiant.service/'
xsi:type='ns1:ParameterPair'>
<fieldName xsi:type='xsd:string'>additional data item name</fieldName>
<fieldData xsi:type='xsd:string'>additional data item value</fieldData>

</item>
</fieldData>

</payload>
</root>

Code 13-3: Sample Payload XML Document
336 Foundation Server Developer’s Guide, release 5.7

Establishing a Network Presence
MSXML Parser

One way that thin client applications using Network Presence can leverage the XML format of the
callback event/response data within the browser is to use Microsoft’s XML parser - MSXML
component.

Note: Versions of Internet Explorer prior to 6.0 might not have the MSXML.dll installed.
You can download it from Microsoft’s Download Center:
http://www.microsoft.com/downloads

This is an optional component that is not required by Chordiant. It is a suggestion
for a tool you can choose to use.

Code Sample 13-4 demonstrates an example usage of the MS XML parser.

function parseEventData(theEventData)
{

var results = new Object();
var theData = new String(theEventData);
var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async="false";
xmlDoc.loadXML(theData);
var objNodeList = xmlDoc.getElementsByTagName("item");
alert("objNodeList.length: " + objNodeList.length);
for (var i=0; i<objNodeList.length; i++)
{

var fieldName =
objNodeList.item(i).getElementsByTagName("fieldName").item(0).text;

var fieldData =
objNodeList.item(i).getElementsByTagName("fieldData").item(0).text;

results[fieldName] = fieldData;
}

return results;
}

Code 13-4: JavaScript Sample Using the MS XML Parser
Chapter 13: Network Presence 337

http://www.microsoft.com/downloads

Security and Network Presence
SECURITY AND NETWORK PRESENCE

In the Chordiant system, callbacks involving Network Presence are secure for two reasons: the
location of the browsers and the location of the logic processing.

• Location of “Smart” Browsers: “Smart” browsers are those that include Network Presence.
Network Presence is not required on all clients. For example, an account holder checking her
balance from home does not require Network Presence on their personal browser. Only clients
who will be receiving callbacks, for workflows and other push functionality, require Network
Presence. These clients are usually located within a branch or call center. As such, these
browsers are usually located physically within a protected network, behind a firewall, or are
connected to the trusted network logically via Virtual Private Network (VPN). Within the
protected network, all calls back to the browser are secure.

• Location of Logic Processing: When a call from the server reaches the “smart” client, the call
is usually passed back to the server side, where its logic is processed. All service calls on the
server side must go through the authorization process, since all service APIs require an
authentication token for input. Only minor processing occurs on the browser itself.

Browser Security

The Network Presence component requires the Java plug-in for the browser to run a socket server
in the browser. This Java plug-in is installed into the browser with the JDK/JRE installation that
you have already performed.

The Network Presence component returns the location of the client to the application server, so
your application can make a call back to the client.

In addition to the client’s IP address, you may also want to use the client machine’s host name in
an HTTP session. For example, the Chordiant Teller application uses the host name to determine
which devices are attached to a client’s machine.

There are two ways to grant the security privileges:

• “Choosing a Signed Network Presence Plug-In” on page 339

• “Modifying the java.policy File” on page 340

Performing either one of these modifications will grant the privileges. Both modifications are not
required.
338 Foundation Server Developer’s Guide, release 5.7

Security and Network Presence
Choosing a Signed Network Presence Plug-In

Chordiant provides two Network Presence plug-ins in CAFE:

• A Signed Network Presence applet plug-in — Defines the Network Presence applet to use the
client machine’s host name, which requires additional security in the form of a
digitally-signed applet. In this plug-in, the networkpresenceapplet.jsp file’s
useHostName parameter is true. The certificate is located in the NWPThinClient.jar.

• An Unsigned Network Presence applet plug-in — Defines the Network Presence applet
without using the host name. No additional security is required. In this plug-in, the
networkpresenceapplet.jsp file’s useHostName parameter is false.

For most applications, the unsigned applet plug-in is installed by default. For applications that
require the client’s host name, like Chordiant Teller, the signed applet is installed by default.

To override the default settings, you can select which plug-in to use in your desktop
configuration, following the standard CAFE customization guidelines.

To specify the signed Network Presence applet:

1. Locate the CAFE desktop XML configuration file in the
/iAdvisorWeb/Preferences/config directory.

2. Update the values as shown in Code Sample 13-5.

3. Save the configuration file to the xAdvisorWeb/Preferences/config directory.

To specify the unsigned applet, change the value of the <source> tag to
/Advisor/iAdvisorWeb/plugins/networkpresence/nwpplugin.js. The name of the file is the same, but
it is located in a different directory.

Notes: Do not mix both the signed and unsigned Network Presence applets within your
application desktops. If you are using a desktop that requires the signed applet,
such as Chordiant Teller, update your other desktops for that application to
require the signed applet.

Setting the <persist> tag to none requires the applet to be reloaded and, if it is
signed, recertified.

<plugins>
...
<plugin name="nwpplugin">

<source>/Advisor/iAdvisorWeb/plugins/networkpresence-signed/nwpplugin.js</source>
<unLoad>unLoadNWPPlugin()</unLoad>
<persist>none</persist>

</plugin>
...

</plugins>

Code 13-5: Specifying the Signed Network Presence CAFE Plug-in
Chapter 13: Network Presence 339

Security and Network Presence
Refer to the Chordiant 5 CAFE Client Developer’s Reference Guide for more information on these tags
and on specifying the desktop configuration.

The signed plug-in contains a certificate with Chordiant’s signature. If you use this certificate,
users will see the security warning dialog box illustrated in Figure 13-2 when the applet is loaded.

Figure 13-2: Security Warning Dialog Box

You may replace Chordiant’s signing certificate with your own company's signing certificate, if
required by your company’s security policy. This is a standard Java procedure. The Java JDK
includes utilities to create a self-signing certificate or request a Certification Authority-signed
certificate, and to use a certificate to re-sign an applet. You can use these tools in conjunction with
a Certification Authority company.

For information on working with certificates, refer to
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/contents.html

Modifying the java.policy File

The security configuration that must be set for the Java plug-in will allow inbound socket
connections to the Network Presence applet. This configuration is made in a the java.policy
file, a text file which lives in the Java plug-in installation directory. You must manually edit the
java.policy file to modify a particular line in it that specifies socket permissions.

The location for this file is:

{JRE PATH}\lib\security\java.policy

To find the path of the JRE you are using:

1. Open the Windows Control Panel from the Start menu.

2. Double-click the Java Plug-in.
340 Foundation Server Developer’s Guide, release 5.7

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/contents.html

Security and Network Presence
3. Select the Advanced tab to see the JRE location.

To change the security permissions through the java.policy file:

1. Locate the following line of code, which is commented out by default:

2. Uncomment the line and change the last argument to open up the socket security.

3. If the host name parameter is set to true, it requires the socket permission to be set to:

Note: The configuration changes in Step 2 and Step 3 must be made on every browser
client that needs to run thin client applications with Network Presence
capabilities.

4. Determine which Java plug-in is installed (or not installed) for the Microsoft Internet Explorer
browser.

From the Tools menu, select Internet Options. On the Advanced tab, look under Java (Sun).
Your settings should look similar to this:

Figure 13-3: Verifying Java Plug-in

Note that the Microsoft VM should NOT be selected as Chordiant does not specifically certify on
it, although it might work.

//permission java.net.SocketPermission "localhost:1024-", "listen";

permission java.net.SocketPermission "localhost:1024-", "accept, connect, listen, resolve";

permission java.net.SocketPermission "*:1024-","accept, connect, listen, resolve";
Chapter 13: Network Presence 341

Security and Network Presence
Additional Scenarios Requir ing Security Privi leges

You must also use the signed applet or update the java.policy file if you want to use either the
host name or IP address in the following circumstances:

• If you are running the HTTP server and the J2EE application server on different machines.

• If there is a Network Address Translation (NAT) device, like a proxy server, between the
browser and the web server.
342 Foundation Server Developer’s Guide, release 5.7

Index
A
AccountService, in Administrative Console 79
Action ID

ACTION_ID parameter 291
creating 317
current 316
ErrorPage 315
execution flow 293
HTTP request 285, 287
request context map 284, 291
sample 299
sample of saving current 316

adding components through configuration 101
addLogin method, authentication 281
addToResults method

base class method 312, 319
Hashtable 312
processing request results 309
sample code 312, 319

Administration Manager 280
administration, command line 67
AdministrationHelper.java 67
Administrative Console

actual service behavior 70
API 67
command line 67
multiple JVMs 85
standard service behavior 69
using 66

Administrator, security 262
aggregate client agent 134
APP_LOGIC parameter 286, 287, 292
applet

debugging 332
HTML frame 332
initialization parameters 332

AppletFrameSource.xsl 332
application

building 111, 157
callbacks 14
client agent interaction 30
components 4, 14
developer role 183
distributed 2
eBusiness 1, 2

headless 284
horizontal scaling 2
in Foundation Server 4
model 9
multi-channel 1
multi-datastore 1
server. See application server
startup and shutdown 29
vertical scaling 2

Application Logic Resource
and Action IDs 291
definition 284
example of building 319
exception handling 320
forms of 287
interface with service 287
JSP pages 290
Request Context Mapper 296
servlets 290, 307
understanding 312
used by system 290

application server
components 10
CustomObjects added to 62
GatewayHelper and name service 14
J2EE 9
J2EE application model 3
JVM 64
JX services on 5
make code available to 104
multiple JVMs 85
resource manager 219
state model 41
statichelper 45
web application 12

ApplicationInitializerServlet class
init method 305
web.xml file 324

architecture
asynchronous messaging 241
concepts 2
J2EE 3
Java Connector (JCA) 182
layered 4
Message Driven Beans 25
method authorization 117
343

overview 9
single-bean 19

asynchronous messaging
See also Chordiant Event Server
architecture 241
components 239
error queue 245
in Administrative Console 75
JXE_CustomObjects.xml 246
OutboundMessage.xml 247
overview 239

attributes
HttpServletRequest 312
length limitation 97
ServletRequest 297

audit
distributed 105, 108
transactions 109

authentication
authenticate method 157, 278
AUTHENTICATION_SUCCESS 278
changePassword method 281
createTokenObject method 278
customizing 277
decode method 278
encode method 278
grace period 280
handler 277
IAuthenticationAdmin interface 277, 280
INVALID_CREDENTIALS 278
IPasswordPolicy interface 280
NO_PASSWORD_CONTROLS 280
NO_SUCH_OBJECT 278
PASSWORD_EXPIRED 278, 280
Security service 29
SecurityHelper 15
token

creating 275
customizing 282
encrypting and decrypting 277
encrypting with database 279
overview 15, 253
parameters in 282
Request Server 305
validating 276

USER_LOCKED_OUT 278
AUTHENTICATION_SUCCESS 278
AuthenticationHandlerConstants 278

authorization, method-level 117

B
balancing load 10, 38
bean managed transaction

background 20
configuration 120, 121
deployment descriptor 22
example 21

bean pool 10
begin

J2EE method 211
XSL 234

BMT. See bean managed transactions
bogus object, security for 263
browser

Request Server component 284
security 338
smart 338

BuildAppletFrameResults 332
building

client agents 134, 135
client applications 111, 157
selectors 300
services 112, 114

business analyst role 183
business object behavior

getBusinessObjectBehaviorForName 175
getBusinessObjectBehaviorForObject 175
server-side 118

business object criteria
description 196
equivalency criteria constants 196
getBusinessObjectCriteriaForName 176
Java class 187
order by interface 208
sample code 196
segments 191

business service
building 112
caching 117
client agent exceptions 92
creating 317
in Administrative Console 79
logic 134
optimistic locking 118
processRequest 113
344 Foundation Server Developer’s Guide, release 5.7

structure 113
BusinessDataClientAgentBaseClass 135
BusinessDataServiceBaseClass 114
BusinessObjectFactoryService, in Administrative

Console 79
BusinessObjectResourceManager 170, 171, 174

C
cache

business service base class 117
flushing 322

call procedure, XSL 237
Callback Handler, Custom 35
callbacks

callbackShutdown method 165
client agent 160
ClientAgentHelper 61
GatewayHelper 14
handling 161
implementing 160
implementing in service 160
overview 5
ping 165

callbackShutdown method 165
case/switch, XSL 235
case-sensitivity

in log criteria 56
in securitymanager.xml 273
XML configuration files 96

casting client agents 61
central persistent 39
certificate for network presence security 339
Certification Authority company 340
changePassword method 281
Character Large Objects (CLOB)

data type support 225
description 218
rules 219
sample attribute definition 219

check method 224
choose, XSL tag 235
Chordiant 5 Foundation Server

Application Logic Resource 284
Chordiant Interaction Server, interaction 326
components 4
concepts 2
features 3

overview 1
services 283

Chordiant Application Administrator 322
Chordiant Event Server

See also asynchronous messaging
error queue 245
inbound messages 239
interacting with services 131
Message Driven Bean 239

Chordiant Global Unique Identifier (GUID). See
Global Unique Identifier (GUID)

Chordiant Interaction Designer
building screens 186
creating web application interface 184
integrating with Foundation Server 326
using XSD 327

Chordiant Interaction Server (CIS)
dialogs 290
dialogServer

content 284, 292, 306, 320
presentation context 328
Transform Type 326
transformation type 289

initializing 328
interaction with Foundation Server 326

Chordiant Metadata Information (CMI) file
defining joins 216
example 186

Chordiant Persistence Server
application developer role 183
business analyst role 183
business object criteria 196
Character Large Objects (CLOB) 218
configuring for WebSphere MQ 228
count interface 210
data type support 225
database specialist role 183
definition 5
deployed model 18, 181
development model 183
example of using 231
joins 215
Lock Manager 222
locking API 203
logical view 18, 181
MQ data access methods 193
object to file support 226
order by interface 207
Index 345

overview 18
points 189
process flow 185
rays 190
relationship to components 181
Resource Manager 219
segments 191
sets 190
SQL data access methods 192
transactions 211
user interface designer role 183

Chordiant Profile Manager 280
Chordiant Teller, network presence and 339
Chordiant Way Service, in Administrative Console

78
Chordiant Web Application Infrastructure. See

Request Server
ChordiantBaseEJBException 92
ChordiantBaseException 92
ChordiantRuntimeException 92
ChordiantServletBaseClass

addToResults method 309, 312
Application Logic Resource 287, 312, 319
as application logic resource 286
building application logic resource 319
Chordiant Interaction Server 328
creates presentation 288
definition 284
description 307
doPresentation method 287, 307, 316, 319
doService method 287, 307, 319
example of extending 319
getAuthenticationToken method 309
getErrorMessageStringResource 307
getRequestResults method 308
getSession method 308
getUserNameFromSession method 309
HTTP Request and session 289
in execution flow 287
interaction with Transformation Helper 284
no override 319
primary class 305
request attribute 312
service method 287, 319
setResultObject method 309
standard presentation 319
using 307

ChordiantSessionHelper class
definition 305
ensureSessionExists method 310
getSession method 310
removeSession method 310
using 310

CICS 18, 181
CLASS_NAME 114, 136, 157
classes

and pooling 19
ApplicationInitializerServlet 305
BusinessDataClientAgentBaseClass 135
BusinessDataServiceBaseClass 114
ChordiantServletBaseClass 287, 307, 312, 319
ChordiantSessionHelper 305, 310
ClientAgent 15
ClientAgentBaseClass 15, 135
CustomObject Java 62
deploy 104
GenericDialogServerServlet 306, 326, 327
LoginHelper 305, 311
name constant 114
PayloadData 140
PropertyResourceBundle 307
RegisterNetworkPresence 306
RequestContextMapperHelper 305
RequestHandler 305
SelectorsHelper 303, 304, 305
separate for constants 115
ServiceBaseClass 114
services as Java 10, 19
subclassing 3
TransformHelper 313

client agent
aggregate 134
application component 4, 15
Application Logic Resource 287
base class 31, 32, 34, 36
building 134, 135
caching 61
callbacks 160
casting 61
client application

building 158
interaction 30

component 4
constants 136
346 Foundation Server Developer’s Guide, release 5.7

creating for web application 317
overview 3
payload transfer 16
processRequest 156
processRequest in service 114
requested from ClientAgentHelper 29
service interactions 33
structure 134
tag limitation 97
types of 142
XML

calling 145
client agent 142, 143
enumeration section 96

client application. See application
client requests 10
CLIENT_IP_ADDR 332
ClientAgent class 15
ClientAgentBaseClass class 15, 135
ClientAgentHelper

Application Logic Resource 287
callbacks 160
getClientAgent 61
getClientAgentForKey 61
in Administrative Console 70
in building Client Agent 136
in startup 29
overview 15, 61
service to service 32, 167

clients
application startup and shutdown 29
authentication 15
fat 1
headless 285, 287, 288, 290
HTML-based 12, 283
Java applications 283
smart 338
thick 1
thin 1, 287

cluster
Administrative Console for 86
support in security 274

CMI_FILE parameter 172
CMI_PATH, multiple paths 173
CMT. See container managed transactions
CMTRequired

configuration 120, 121
transaction functionality 119

code, example 112
ColorShape sample application 328
command line, administration by 67
commands, -D 67
commit method 211
component.xml 98
components

adding through configuration 101
Chordiant 5 Foundation Server 4
component.xml 98
components directory 98
configuration 15
interactions 4

concepts, basics of Foundation Server 2
conceptual model 184
configuration

adding components 101
BMT or CMTRequired 120, 121
changing logging 58
component 15
component.xml files 98
components/master 98
ConfigurationHelper 46
CustomObject 177
EJBStub 120, 121
files

DeviceContextMap.xml 294
style 96
TransformHelper.xml 312
Web.xml 291, 323
WebToolkit.xml 316

getconfiguration 47
getconfigurationvalue 47
jxpmq.xml 228
logging 53
master files overview 97
master.dtd 99
master.xml 101
nodename.xml 99
Resource Manager 171, 173
sample file 96
sitemaster.xml file 99
SmartStub 124
tag limitation 97
transaction type 117
Web.xml 325
Index 347

ConfigurationHelper
details 46
in Administrative Console 71
Resource Manager’s dependency 79

connection pool 172, 219, 221
CONNECTION_URL_PARAM_NAME parameter

306
ConnectionName tag 130
connectionpoolsize 272
connectionURL 331
constants

defining in client agent 136
defining in service 114
in separate class 115

constructor, in CustomObject 177
container managed transaction

background 20, 22
configuration 120, 121
debugging tip 123
deployment descriptor 24
example 23
rollback 122

Context Device Mapper Helper, selectors 296
CONTEXT parameter 291
context selectors 297
ContextMap.xml 321
control mechanism, transactions 119
convertStringToDate method 303
count interface 210
countPoint method 210
countRay method 210
countSegment method 210
createTokenObject method 278
creating

Action IDs 317
client agents 134, 135
client application 157
HTML storyboards 318
Java Client Agents 317
new business services 317
Request Context Map 318, 320
services 112

criteria
business object. See business object criteria
formatting for LogHelper 56
in production environment 58
logging 54, 56
multiple 57

CRUD operations 181
CTI services in Administrative Console 84
CtiContainerService, in Administrative Console 84
current Action ID 316
custom error messages, incorporating 307
Custom JavaScript Callback Handler 35
customization

authentication handler 277
authentication token 282
Message Dispatcher 246
philosophy 112

CustomObject
configuration 177
Helper 62
in Administrative Console 73
InboundMessageHelper 241
Java class 62
JXE_CustomObjects.xml 246
managing 178
OutboundMessageHelper 241
overview 176
requirements of 177

CustomObjectHelper 62
CwapiService in Administrative Console 78

D
-D commands 67
data

access component 4, 5
driven 2
getDataWithName 140
multiple sources 174
putDataWithName 140
stores 5
stores, relational 2
types supported, client agents and services 141
types supported, persistence 225

Data Accessor
Character Large Objects (CLOB) 218
count interface 210
DB2UDB 187
description 187
getDataAccessForName 176
interface notation 188
Java class 187
joins 215
locking
348 Foundation Server Developer’s Guide, release 5.7

API 203
rules 197

MQ data access methods 193
optimistic locking 197, 198
Oracle 187
order by interface 207
pessimistic locking 197, 199
points 189
rays 190
relation to Lock Manager 222
segments 191
sets 190
SQL data access methods 192
transactions 211
WebSphere MQ 187

database
performance tip 193
shallow object 193
specialist role 183
summary view 193

DB2
CLOB 218
DB2UDB Data Accessor 187
java.util.Date 225

debug
applet 332
LogHelper 49
transactions 109

decode method 278
decodeTokenStringToTokenObject 277
decrypting authentication token 277
decryptToken 277, 279
default constructor, CustomObject 177
DEFAULT context 292
delayed presentation mapping 299
deleteLogin 281
deletePointOptimistic method

example 206
optimistic locking 204

deletePointPessimistic method 205
deleteSetOptimistic method 204
deleteSetPessimistic method 205
DeliveryService in Administrative Console 80
dependent transactions 119
deployment

BMT descriptor 22
CMTdescriptor 24
creating new 129

model 13
of JX EJB twice 118

deregister network presence 330
descriptor

BMT deployment 22
CMT deployment 24

Designer. See Chordiant Interaction Designer
developer goals 317
development environment, logging in 58
Device Context Map

flushing 322
sample 305

Device Context Mapper Helper
and output devices 288
and Request Context Mapper 288
and Selectors Helper 294
creating selectors 294
described 304
overview 284

DeviceContextHelper in Administrative Console
71

DeviceContextMap.xml configuration file 294
dialogServer

content 284, 292, 306, 320
presentation context 328
Transform Type 326
transformation type 289
See also Chordiant Interaction Server (CIS)

disableNetworkPresence method 61, 158
dispatcher

JX EJB 19
logic coding 116
processRequest method 116, 135

dispatchRequestMessage 246
distributed

applications 2
audit 105, 108
interface 4

doLogin method sample code 311
doLogout method sample code 311
doPresentation method

default implementation 288
overriding 316, 319
overview 287
response output 287
with ChordiantServletBaseClass 307

doService method 287, 307, 319
doStringComparison method 303
Index 349

double deployment, JX EJB 118
dowork 138
DTD. See master.dtd

E
EbcInteractionService in Administrative Console

80
eBusiness applications 1, 2
EJB

See also Enterprise Java Beans (EJB)
creating new deployment 129
exceptions 92
instances, multiple 170
interfaces 19
JX 19
startup order 26
which one using in transaction 109

ejb_create 19
ejb_passivate 19
EJBBMT 104
EJBCMTRequired 104
EJBStub

configuration 103, 121
default for client agents 120
smartstub 124

EJBStubBMT 128
EJBStubCMTMandatory 130
EJBStubCMTRequired 129
enableNetworkPresence method 60, 158
encode method 278
encrypting authentication token 277, 279
encryptToken 279
ensureSessionExists method 310
Enterprise Information System (EIS) 181
Enterprise Java Beans (EJB)

See also EJB
client interaction with 16
compiler 3
container 3, 10
Request Server model 283
services run as 3, 9, 10

entryexit, LogHelper 49
enumeration

logging 53
tag name 97

ENVIRONMENT_NAME parameter 172
EQ selector operator 298

error messages
incorporating 307
LogHelper 48
properties resource file 307

error queue 245
ErrorHandlingMechanism parameter 316
ErrorPage Action ID 315
errors and rollbacks 122
escape XSL grammar 237
event handler, register 334
Event Server. See Chordiant Event Server
eventClass 334
eventData 334
eventDataFormat 334
eventUserData 334
EveryObject 262
Everyone, security 262
example code 112
exception handling

Application Logic Resource 320
GoBackException 314, 320
IOException 311
overview 313
Request Server 313
SendErrorException 314, 315, 320
ServletException 311

exceptions
and rollbacks 122
business service client agent 92
ChordiantBaseEJBException 92
ChordiantBaseException 92
ChordiantRuntimeException 92
client agent 92
EJB 92
GatewayHelper 60
handling. See exception handling
in log file output 59
JX infrastructure 92
LockUnavailableException 198, 199, 224
LogHelper 48
OperationNotSupported 218
ServiceException 93
socket protocol 93
UnexpectedMultipleRecordsException 206

execute method
Chordiant Interaction Server inputs 306
signature 327

execution flow of the infrastructure 285
350 Foundation Server Developer’s Guide, release 5.7

F
factory

object 170
using methods 175

fat client
GatewayHelper 60
statichelper 45
See also thick client

FatClientStaticHelper method 157, 158
features 3
filter, message 240
filters

changing logging 58
operators, XSL 235
redundant 57

flush
cache 322
device context map 322
Request Context Map 322
templates 322

for, XSL tag 235
Foundation Server. See Chordiant 5 Foundation

Server
frame, applet HTML 332

G
GatewayHelper

application startup and shutdown 29
component 14
details 60
disableNetworkPresence method 61, 158
enableNetworkPresence method 60, 158
overview 5

GatewayServices.name 154
GatewayServices.xml 155
generating Java classes 187
generic

resource manager 170, 171
SOAP servlet 146

GenericDialogServer class
execute method 306
getInputs method 306

GenericDialogServerServlet class 306
execute method 327
getInputs method 327
integrating Dialog Interaction Server 326

overview 306
sample code 328
subclassing 327

GenericService in Administrative Console 80
getAttribute method, sample code 312
getAuthenticationToken method 309
getBusinessObject method 328
getBusinessObjectBehaviorForName 175
getBusinessObjectBehaviorForObject 175
getBusinessObjectCriteriaForName 176
getBusinessObjectForName 175
getClientAgent method 61, 136, 167
getClientAgentForKey method 34, 36, 61, 160
getconfiguration method 47
getconfigurationvalue method 47
getDataAccessForName 176
getDataWithName method 140
getErrorMessageStringResource method 307
getInputs method

overriding 306
signature 327

getPasswordGracePeriod 280
getRequestResults method 308
getSession method 308, 310
getStatus method 211
getUserNameFromSession method 309
Global Unique Identifier (GUID)

defining with a CMI file 195
ENVIRONMENT_NAME 172
in optimistic locking 198
Lock Manager 222, 224, 226
overview 194
resource manager 221

GoBack session object 316
GoBackException

sample code 315
using 314, 320

grace period 280
grammar, escape from XSL 237
greater than, XSL 238
GT selector operator 298
GTE selector operator 298
GUID. See Global Unique Identifier (GUID)
GuideService, in Administrative Console 80
Index 351

H
Handler, Custom JavaScript Callback 35
handleSendErrorException method 316
Harmony Bank sample application 328
HashMap

object 303
selectors 298, 300

HashTable
examples 304
object 319

header, XSL template 234, 237
headless

application 284
client 285, 287, 288, 290

HelloWorldService, in Administrative Console 78
helpers

ClientAgentHelper 61, 136
ConfigurationHelper 46
CustomObjectHelper 62
GatewayHelper 60
LogHelper 47
SecurityManager 61
StaticHelpers 45

hold value, XSL 235
hopping JVMs 170
horizontal scaling 2
host name, network presence and 338
HTML

applet frame 332
storyboards 318

HTML-based clients 12, 283
HTTP clients 6
HTTP Request

Action ID 285
attribute 296
browser 284
forwarded by Request Handler 287
generation 285
mapping to contexts 293
network presence 306
parameter 296
Request Context Mapper 293
Request Handler Servlet 284
Transformation Helper 289

HTTP Response
Application Logic Resource 290
Name Service Helper 306
NameServiceHelper 306

HttpServletRequest
attribute 312
attribute on 296
client request for servlet 284
parameter 297
Request Handler Servlet 296
results in 319
setAttribute method 312

HttpServletResponse 284
HttpSession object 308, 310

I
IAuthenticationAdmin interface 277, 280
if-then, XSL tag 234
IIOPServiceSmartStub example 127
implementing

callbacks 160
service to service calls 167

import XSL 237
IMS 18
info messages in LogHelper 49
infrastructure

client agent and service interactions 31
communicating errors 92
initialization 29
service control methods 113
service to client agent interactions 33
service to service interactions 32
services and JX 10
StaticHelpers and 45
web application 12, 283

init method 305
initialization parameters for applet 332
input XML client agent 144
integration with services 131
interaction, client agent and application 30
interfaces

count 210
CustomObjects 178
Data Accessor notation 188
distributed 4
EJB 19
logging 48
optimistic locking 203
order by 207
pessimistic locking 204
processCallback 15, 135
352 Foundation Server Developer’s Guide, release 5.7

processRequest 135
ServiceControl 178, 179
ServiceControlResponse 179
single-bean architecture 19
typed 137
XML Client Agent 143

INVALID_CREDENTIALS 278
InventoryService in Administrative Console 81
IOException 311
IPasswordPolicy interface 280
isDebugLogOn

caution 52
example 52
LogHelper 52

IVR/VRU systems 2

J
J2EE

accessing services through 142, 149
and transaction rollbacks 122
application model 3
application server 9, 10, 12, 283
applications 16
architecture 3
bean pool 10
thread pool 10
transactions 20
trans-attribute 25
UserTransaction interface 20

Java
applications 283, 284
client agents 317
Connect Architecture (JCA) 18
Object Graphs 15, 17
payload 15
plugin 341
Server Pages (JSP) 6
transaction API 21, 22
Virtual Machine (JVM) 14, 29

Java classes
business object criteria 187
business objects 187
custom services 10
Data Accessor 187
generating 187

Java Connector Architecture (JCA) 182
java.policy file, editing 340

java.util.Date, formats 225
Javadoc, accessing 112
JavaServer Pages (JSP)

APP_LOGIC parameter 286
application and presentation logic 290
Application Logic Resource 284, 287, 290
context map 299

JDBC 3
JMS

queues 239
sessions 76

JNDIName
SmartStub 129
trans-attribute tag 130

joins
defining with a CMI file 216
methods offering support 218
sample definition 217
using 215

JRE location, finding 341
JTA

for more information 21, 22
timeout 123

JVM, calls within 170
JX EJB 20
JXAdmin. See Administrative Console
JXE_CustomObjects.xml 246
jxpmq.xml configuration file 228

L
layered architecture 4
LDAP 277
less than, XSL 238
levels

in production environment 58
LogHelper 54
multiple 57
redundant 57

life cycle of an application 29
listen

IP address 152
port number 152

LIT selector operator 298
load balancing 10, 38
local methods 117
LocationService in Administrative Console 81
Index 353

Lock Manager
check method 224
client interface 224
lock method 224
optimistic locking 222
overview 222
pessimistic locking 222
relationship to

components 223
Data Accessor 222
database 223

timeout 223
unlock method 224

lock method 224
lock.xml 223
locking

optimistic 198
pessimistic 199

LockService
client agent 224
configuring 223
in Administrative Console 81

LockUnavailableException 198, 199, 224
LOG_DEBUG_ON

configuration 53
in production environment 58
isDebugLogOn LogHelper 52

logging
changing configuration 58
configuration 53
criteria 54, 56
development environment 58
enumeration 53
file output 59
level 54
production environment 58
threads 60
XML enumeration section 96

LOGGING_ON_PARAM_NAME 332
LogHelper

calling 59
configuration 53
criteria 54
criteria formatting 56
debug 49
entryexit 49
file output 59
in Administrative Console 72

info 49
interfaces 48
isDebugLogOn 52
level 54
LOG_DEBUG_ON 52
LogHelper.xml 53
message formatting 56
method parentheses 56
new Log Filter 56
new writer 57
overview 47
relationships diagram 55
warning 49
writer 54

LogHelper.xml 53
logic in business services 134
LoginHelper class

description 311
doLogin method 311
doLogout method 311
overview 305
relation to Security Helper 305

logPerformanceStatistics 50
LT selector operator 298
LTE selector operator 298

M
main method

in client application 157
in CustomObject 177

master configuration files 97
master.dtd

configuration values 97
description 99
syntax 100
web browser vs. text editor 100

master.xml
clientagents sections 102
configuration file 96, 101
services section 103

MDB. See Message Driven Beans
message

debug 49
dispatcher 239, 246
driven beans. See Message Driven Beans
entryexit 49
error 48
354 Foundation Server Developer’s Guide, release 5.7

handler 240
log 56
warning 49
writer 54

Message Driven Beans
architecture 25
creating new 251
Event Server 239

MessageFilter 240
method name constants

client agent 136
service 115

MethodEntry 49
MethodExit 49
methods

authorization 117
constants 136
for monitoring 63
in log file 48
local 117
log criteria 56
parentheses in log file 56
private 113
service and client agent correlation 134
service control 45, 113, 305

Microsoft Internet Explorer 289
MIME types 291, 304
monitor system 63
MQ Series. See WebSphere MQ
MSXML 337
multi-channel applications 1, 2
multi-datastore applications 1, 2
multi-instance central persistent stateless service 39
multi-instance stateless service 38
multiple

CMI files 173
criteria, logging 57
data sources 174
EJB instances 170
levels, logging 57
primary keys 189

multi-threaded
logging 60
stateful service 41

N
NAME parameter 292
NameServiceHelper class

HTTP Response 306
in Administrative Console 72
rebind method 306
unbind method 306

network presence
application component 14
browser security 338
building client application 158
certificate for 339
Chordiant Teller 339
concept 5
connectionURL 331
deregister 330
GatewayHelper 60
host name determination 338
HTTP Request 306
key

format 331
in thick client 34

MSXML 337
NetworkPresenceApplet 35
networkPresenceEventHandler 334
overview 329
PayloadData 336
persist tag 339
processRequest 334
register 330
registering 306
security 338
security warning message 340
service to client agent 34
signed applet 339
thin clients 35

NETWORK_PRESENCE_KEY_PARAM_NAME
parameter 306

NetworkPresenceApplet 35
networkPresenceEventHandler 334, 335
NO_SUCH_OBJECT 278
nodename.xml 99
non-blocking main method 177
non-existent object, security for 263
NumberGenerationService in Administrative

Console 81
NWP_API.js 334
NWPKey 34
Index 355

NWPThinClient.jar 339

O
OBJECT_DIRECTORY

multiple paths 173
parameter 172

object-oriented tools
creating persistence files 182
Rational Rose 327

objects
factory 170
for processRequest 139
GoBack session 316
HashMap 303
HashTable 319
HttpSession 308, 310
non-existent, security for 263
org.w3c.Document 312
to file support 226
w3c.dom.Document 327

OfferingService in Administrative Console 82
omit-xml-declaration 234
OperationNotSupported exception 218
operators 298
optimistic locking

API 203
behavior 198
business service 118
deletePointOptimistic method 204
deletePointPessimistic method 205
deleteSetOptimistic method 204
deleteSetPessimistic method 205
description 198
examples 205
interaction with pessimistic locking 202
Lock Manager 222
retrievePointPessimistic method 204
retrieveRayPessimistic method 204
retrieveSegmentPessimistic method 204
retrieveSetPessimistic method 204
sample definition 199
updatePointOptimistic method 203
updatePointPessimistic method 205
updateSetOptimistic method 203
updateSetPessimistic method 205

options, XSL 234

Oracle
Data Accessor 187
java.util.Date 225

order
by interface

example 209
overview 207
retrieveRayOrdered method 208
retrieveSegmentOrdered method 208

starting up EJBs 26
OrderFullfillmentService in Administrative

Console 82
OrderGenerationService in Administrative

Console 82
OrderTrackingService in Administrative Console

83
orphan locks 199, 200
OutboundMessage.xml 247
OutboundMessageHelper

Administrative Console behavior 75
description 239

output XML client agent 145

P
PACKAGE_NAME 114, 136, 157
parentheses in LogHelper 56
parser, MSXML 337
PartyRoleService in Administrative Console 83
password grace period 280
PASSWORD_EXPIRED 278, 280
paths, multiple CMI 173
payload

application life cycle 34, 36
application to client agent 31
Java Object Graph 15
overview 15
service to client agent 32
transfer with client agent 16
XML-based 4

PayloadData
container class 140
network presence 336

performance
data updates 193
distributedaudit function 105
logging 50
logPerformanceStatistics 50
356 Foundation Server Developer’s Guide, release 5.7

performance.xml configuration file 105
tip, ping method 165

persist tag, network presence 339
Persistence Server. See Chordiant Persistence

Server
persistence, definition 5
PersistentCacheManager in Administrative

Console 78, 79
pessimistic locking

API 203
application programming interface 204
description 199
examples 205
interaction with optimistic locking 202
lock life span 200
Lock Manager 222
orphan locks 199, 200
record deadlocks 199

ping
callbacks 165
eventUserData value 334

plugin, Java 341
PmfCustomerService in Administrative Console 83
points

Data Accessor 189
multiple 189

policy, Java 340
pooling 19
presentation implementing handling 319
PRESENTATION parameter 287, 292
Presentation Resource

access business object 289
and ActionIDs 291
ChordiantServletBaseClass 319
creating 320
description 284
doPresentation method 287
headless clients 290
used by system 290
wireless devices 290
XSL stylesheets 289, 290

primary
classes 305
keys, multiple 189

principal, security 255
private methods 113
procedure, call in XSL 237
process flow, Persistence Server 185

processCallback method
application life cycle 34
details 163
example 163
in client agent 135

processRequest method
and network presence 334
client agent to service 31
client agent vs. service 156
in business service 113
in callback 161
in client agent 135, 136
in client agent, sample code 137
in service 114
in service to service 168
in service, sample code 116
service to client agent 34, 36

processRequestObject 139, 150
processRequestXMLString 139, 150
production environment, logging in 58
ProductService in Administrative Console 83
Profile Manager 280
properties resource file

create 307
sample 308

PropertyResourceBundle class 307
PullQueueManager in Administrative Console 75
PushQueueManager in Administrative Console 76
putDataWithName method 140

Q
queue

error, messaging 245
JMS 239

QueueAdminTopicListener in Administrative
Console 76

QueueService in Administrative Console 85
QueueTableManager in Administrative Console 76

R
Rational Rose

business analyst tool 184
XSDs 327

rays 190
RDBMS 18
rebind method 306
Index 357

record deadlocks 199
redundant

log filters 57
log levels 57

refresh
ConfigurationHelper 47, 100
LogHelper 58
StaticHelper 45

REGISTER_NET_PRESENCE_PARAM_NAME
parameter 306

registerEventHandler 334
RegisterNetworkPresence 306, 330, 331
reinitialize method

called automatically 169
in service 117

relational data stores 2
Relational Database Management System (RDBMS)

181
Remote Method Invocation objects 176
RemoteEJB smartstub 124
removeSession method 310
ReqMapParam 297
ReqMapParamATTR 300
ReqMapParamREQ 300
ReqMapParamSO 300
Request Context Map

Action ID 291
ACTION_ID tag 291
APP_LOGIC tag 292
context selector 297
CONTEXT tag 291
creating 318, 320
defining selectors 321
description 284, 291
elements included 291
execution flow 293
exploring 291
flushing 322
format 291
location 291
mapping requests 290
NAME tag 292
PRESENTATION tag 292
sample 285, 293, 321
selectors 288
Selectors Helper 300
TRANSFORM_TYPE tag 292
using 287, 290

Request Context Mapper
called by Request Handler Servlet 294
delayed presentation 299
doPresentation method 287
returns context 296

Request Context Mapper Helper
description 284, 290
execution flow 293
matching selector string 298
process 285
using 285
using Selectors Helper 288

Request Handler Servlet
calling Selectors Helper 293
calls Request Context Mapper 294
description 284
HTTP request forwarded from 287
HTTP request routed to 285
receives context 296
request to Application Logic Resource 296

Request Map Parameter
attribute 300
request 300
session object 300

Request Server
components of 283
exception handling 313
execution flow 285
interaction with browser 290
introduction 283
main components 284
model 12
overview 283
primary classes 305
Request Context Map 291
XSL transformation types 289

REQUEST_RESULTS_OBJECT_NAME constant
308

RequestContextMapperHelper class 305
RequestContextMapperHelper, in Administrative

Console 72
RequestHandler

class 305
servlet 324

Required 25
Required, trans-attribute 25
reset, Administrative Console 67
358 Foundation Server Developer’s Guide, release 5.7

resource bundle class
resource string name constants 307
sample 307

Resource Manager
and Data Accessor 187
ConfigurationHelper dependency 79
configuring 171, 173
execution flow of database operation 221
interaction with components 220
multiple data sources 174
overview 170, 219

RESOURCE_TAG_FOR_
DESTROY_CONNECTIONS_ TIMEOUT
parameter 228

RESOURCE_TAG_FOR_MAX_
UNUSED_CONNECTIONS parameter 228

RESOURCE_TAG_FOR_MQ_
EXCEPTION_ALLOWED parameter 229

RESOURCE_TAG_FOR_MQ_ PUTQMGR
parameter 229

RESOURCE_TAG_FOR_MQ_CHANNEL
parameter 229

RESOURCE_TAG_FOR_MQ_CONNECTION
TYPE parameter 229

RESOURCE_TAG_FOR_MQ_GETQ parameter 229
RESOURCE_TAG_FOR_MQ_HOSTNAME

parameter 229
RESOURCE_TAG_FOR_MQ_PASSWORD

parameter 229
RESOURCE_TAG_FOR_MQ_PORT parameter 229
RESOURCE_TAG_FOR_MQ_PUTQ parameter 229
RESOURCE_TAG_FOR_MQ_QMGR parameter

229
RESOURCE_TAG_FOR_MQ_USERID parameter

229
RESOURCE_TAG_FOR_MQ_WAITINTERVAL

parameter 229
RESOURCE_TAG_FOR_SQL_DSN parameter 172
retrievePointPessimistic method 204, 223
retrieveRayOrdered method 208
retrieveRayPessimistic method

description 204
example 207

retrieveSegmentOrdered method 208
retrieveSegmentPessimistic method 204
retrieveSetPessimistic method 204
RMI. See Remote Method Invocation
RMIGatewayService 154

RMIService smartstub 124
rollback method 211
rollback transactions 122

S
sample

applications
ColorShape 328
Harmony Bank 328

code 112
configuration file 96

scalability 38
scaling

horizontal 2
vertical 2

scenarios for deployment 13
scope, variables within XSL 236
section

in xml configuration files 96
unique name 97

Secure Sockets Layer, with web services 133
security

Administrator role 262
authentication handler 277
browser 338
cluster support 274
EveryObject 262
Everyone 262
network presence 338
non-existent objects 263
principals 255
SecurityManager.xml 271
system 274
user 262
See also authentication

Security Service, authentication 29
security warning message, network presence 340
SecurityHelper, relation to Login Helper 305
SecurityManager

application component 15
description 15
helper 61
in Administrative Console 72
overview 253

SecurityManager.xml 271, 277, 281
SecurityMgrBeanClientAgent authenticate method

157
Index 359

segments 191
selectors

alternative presentation contexts 321
attributes 297
building 300
context 297
defining 321
described 296
HashMap 293, 298
HTTP Request attribute 296
HTTP Request parameter 296
HttpServletRequest parameter 297
multiple contexts 298
objects 297
operators 297, 298
parts 297
request 297
ServletRequest attribute 297
ServletRequest parameter 297
session object attribute 296

SelectorsHelper class
and Device Context Mapper Helper 304
and RequestContextMapperHelper 288, 293,

305
building selectors 300
convertStringToDate method 303
description 284, 303
doStringComparison method 303
methods of 303
tryDateComparison method 303
tryNumericComparison method 303

self-service applications 283
SendDeregisterNetworkPresenceCommand 331
sendError method 314, 316
SendErrorException 314, 315, 320
SendRegisterNetworkPresenceCommand 330
serializable data types 141
server application components 10
service method 287, 319
service to service calls, transactions in 32
ServiceBaseClass, extending 114
ServiceControl

managing CustomObjects 178
methods 113, 305

ServiceControlCommander.java 67
ServiceControlResponse 247
ServiceException 93

services
as Java classes 19
building 112, 114
calls within JVMs 170
client agent interactions 33
component 5
integration with 131
interfaces 3
J2EE access 149
logic 134
processRequest 156
service interactions 32
service to service calls 167
SOAP request 148
SOAP response 149
stateful 40
stateless 37
stateless, multi-instance 38
stateless, multi-instance, central persistent 39
tag limitation 97
thin client interactions 32, 35
web services 133
XML enumeration section 96

Servlet Base Class. See ChordiantServletBaseClass
ServletException 311
ServletRequest attribute 297
ServletRequest parameter 297
servlets

ApplicationInitializer 324
in Foundation Server 6
Request Server 284
RequestHandler 324
SOAP 146

Session Helper 310
session object attribute 296
SessionContext 20
SessionService in Administrative Console 85
SessionTopicListener in Administrative Console 77
setAttribute method 312
setResultObject method 309
setRollbackOnly 122
sets 190
setup method

in service 117
in service to service call 169
StaticHelper 45

shallow object 193
360 Foundation Server Developer’s Guide, release 5.7

shutdown method
callback 165
in service 117
in service to service call 169
StaticHelper 45

shutdown, client application 29
signed applet, network presence 339
single-bean architecture 19
sitemaster.xml 99
smart browsers 338
SmartStub

configuring 124
JNDIName 129

SOAP
event handler 335
generic servlet 146
protocol for SocketGatewayService 153
request to service 148
response from service 149
wrappers 147

socket protocol exceptions 93
SOCKET_PORT_PARAM_NAME 332
SocketGatewayService

administrative console and 85
background 151
in Administrative Console 74
length-encoded SOAP protocol 153
listen IP address 152
listen port number 152
using 153
vs RMIGatewayService 154

socketGatewayServiceIPAddress 68
socketGatewayServicePort 68
SocketPermission 341
SocketServerRequestHandler 334
SOCKETSTUB smartstub 124
sort XSL tag 234
special security

Administrator 262
EveryObject 262
Everyone 262
user 262

SQL data access methods 192
startup

client application 29
order of EJBs 26

stateful service
description 40
multi-instance, state propagated 44
single instance, multi-threaded 41
single instance, multi-threaded, persistent 43

stateless service
description 37
multi-instance 38
multi-instance, central persistent 39

StaticHelper class
in Administrative Console 70
serviceControl methods 305

StaticHelpers 45
status method

in service 117
in service to service call 169
StaticHelper 45

storyboards, creating HTML 318
structure

business service 113
client agent 134

stubtype 103
style, configuration files 96
stylesheets 6, 233
subclassing 3
summary view 193
supported data types

client agents and services 141
persistence 225

syntax in master.dtd 100
system security 274

T
tag, enumeration section 97
Teller, network presence and 339
template

flushing 322
header, XSL 237

thick client, in architecture 1, 9
thin client

GatewayHelper 60
HTTP request 287
model 1
service interactions 32, 35
Index 361

thread
ID in log 59
log 60
logging and 60
pool 10
spawning from EJB, caution 177
state and 37

ThreadID 60
Throwable error in loghelper 48
timeout, lock 223
TimerCO in Administrative Console 77
TimerService in Administrative Console 85
token, authentication. See authentication token
topic, JMS 239
Transaction_Rollback_Strategy 122, 123
transactional disposition 20
transactions

auditing and debugging 109
background 20
bean managed 20
begin method 211
commit method 211
container managed 22
control mechanism 119
defining type for service 117
definition 211
dependent 119
example of container managed 21, 23
getStatus method 211
how to use 211
rollback 122
rollback method 211
service to service calls 32
which EJB using 109

trans-attribute
creating new deployment 129
J2EE-defined 25
setting on EJB 25

transform technology 15
TRANSFORM_TYPE parameter 292
Transformation Helper

ChordiantServletBaseClass 284
definition 284
description 284
TRANSFORM_TYPE tag 292
XSL-based stylesheet 289

TransformHelper
debugging 313
in Administrative Console 73

TransformHelper.xml configuration file 312
trim value, XSL 236
tryDateComparison method 303
tryNumericComparison method 303
typed interface 137
typographical conventions xiii

U
unbind method 306
UnexpectedMultipleRecordsException exception

206
unique section name 97
unlock method 224
updatePointOptimistic method 203
updatePointPessimistic method 205, 207
updateSetOptimistic method

example 206
optimistic locking 203

updateSetPessimistic method 205
useHostName, network presence 339
user

agent values 291
interface designer role 183
security 262

USER_AUTH_TOKEN_APPLET_INIT_PARAM
332

USER_LOCKED_OUT 278
USER_NAME_APPLET_INIT_PARAM 332
UserProfile_Cache_Topic 274
USERPROFILE_TOPIC_CONNECTION_FACTOR

Y 274
UserTransaction interface 20, 25, 119

V
validating authentication token 276
value

hold, XSL 235
of tag 234
trim, XSL 236

variable scope in XSL 236
vertical scaling 2
VruSocketService in Administrative Console 85
362 Foundation Server Developer’s Guide, release 5.7

W
w3c.dom.Document object 327
warning, LogHelper 49
web

application infrastructure 12, 283
application, StaticHelper 45
browser 6, 284, 287
self-service applications 283
server 12, 283
services

overview 133
Secure Sockets Layer 133
WSDD 133
WSDL 133

Web.xml configuration file
mapping of application logic resource 321
modifying 323
Request Context Map, and 291
sample 325

WebSphere MQ
Chordiant Persistence Server 181
configuring 228
connection configuration 229
connection pool configuration 228
data access methods 193
Data Accessor 187
data store 184
in Chordiant Persistence Server 18
Queue Manager 229
runtime configuration 229
sample configuration 230

WebToolkit.xml configuration file 316
wireless devices

clients 12
HTTP request to phone 285
presentation for 290
selectors 288

WML 6, 284
wrapper, SOAP 147
writer, LogHelper 54, 57
WSDD 133
WSDL 133

X
XML

client agent
calling 145
input 144
interfaces 143
output 145
overview 142, 143

configuration files 98
document for payload 17
enumeration section 96
in Chordiant 5 Foundation Server 6
instance document 313
Metadata Interchange (XMI) file 186
parser 337
payload 4, 15
Schema Definition (XSD) file 186, 326
specifications for interaction 142

XMLMessageDispatcher 239
XMLStorageService in Administrative Console 84
XMLString for processRequest 139, 150
XSL

call procedure 237
case/switch 235
choose 235
excape from XSL grammar 237
filter operators 235
for 235
greater than 238
header 234
hold value 235
if-then 234
import 237
less than 238
options and begin statement 234
sort 234
stylesheets

concept 6
creating 320
Presentation Resource 284, 289, 290
tips 233

template header 237
tips 233
transformation types in Request Server 289
trim value 236
UML Extenders 187
value of tag 234
variable scope 236
Index 363

364 Foundation Server Developer’s Guide, release 5.7

	Contents
	Preface
	Introduction
	Important Chordiant 5 Foundation Server Concepts
	Chordiant 5 Foundation Server Features and Advantages
	Foundation Server Component Interactions
	Additional Components and Concepts

	Chordiant 5 Foundation Server Development

	Understanding JX Architecture
	Enterprise Services Topology
	Enterprise Services Detail
	Web Application Component Detail

	Service and Web Application Component Topology
	Deployment Model
	JX Client Application Components
	Exchanging Information through Payload
	Chordiant Persistence Server
	Single-Bean Architecture
	Transactions with the JX EJB
	Background Information
	Bean Managed Transactions
	BMT Deployment
	Container Managed Transactions
	CMT Deployment
	CMT “trans-attribute” Options

	Message Driven Beans
	Startup Order of Beans

	Life Cycle of a Foundation Server Application
	Client Application Startup and Shutdown
	Thick Client Application
	Thin Client Applications

	Thick Client to Service Interactions
	Service to Service and Thin Client to Service Interactions
	Service to Client Interactions
	Thick Client Scenario
	Thin Client Scenario

	Managing State in JX Services
	Stateless Service
	Multi-Instance Model
	Multi-Instance, Central Persistent Model

	Stateful Services
	Single Instance, Multi-Threaded Model
	Single-Instance, Multi-Threaded, Persistent Model
	Multi-Instance, State Propagated Model

	Chordiant 5 Foundation Server Helpers
	StaticHelper
	ConfigurationHelper
	Configuration Refreshing

	LogHelper
	Logging Interfaces
	Error
	Warning
	Info
	Debug
	MethodEntry / MethodExit
	Performance

	Logging Configuration
	Creating a New LogFilter
	Criteria Details
	Redundant Levels
	Redundant Filters
	Creating a New LogWriter
	Changing Logging Configuration
	Production Environment Settings

	Calling the LogHelper
	Log File Output
	Multi-Threaded Logging

	GatewayHelper
	ClientAgentHelper
	Security Service
	CustomObjectHelper

	Chordiant 5 Foundation Server Administration
	Monitoring the Chordiant 5 Foundation Server System
	Using the Administrative Console
	Service Control API
	Service Control through the Command Line
	Security and the Administrative Console

	Behavior of Services within the Administrative Console
	Standard Behavior
	Actual Behavior of Chordiant-Provided Services

	Multiple Application Server JVMs and SocketGatewayService
	Configuring a Cluster Environment for Use with the Administrative Console

	Exceptions and Error Handling

	Configuration Files
	Chordiant XML Configuration File Style
	Master Configuration Files
	components/{component}.xml
	sitemaster.xml
	{nodename}.xml
	master.dtd
	Referencing master.dtd

	ConfigurationHelper

	Adding Components through Configuration
	Auditing for Performance
	distributedaudit
	Auditing and Debugging Transactions

	Creating Foundation Server Components
	Building an Application
	Customization Philosophy
	Generating Java Components from Design Tools
	Javadoc
	Example Code

	Building a Service
	Business Service Structure
	Creating a Service
	Exceptions
	Locking
	Accessing Data Stores
	Server-Side Business Object Behavior
	Transactions in Chordiant Foundation Server
	Transaction Control Mechanism

	Rollbacks
	Configuring for Rollbacks

	Configuring SmartStubs
	Creating Your Own Smartstub Type
	Creating Another EJB Deployment

	Integrating with Chordiant Services
	Using Web Services
	Web Services Security

	Building a Client Agent
	Client Agent Structure
	Creating a Client Agent
	Passing Payload with PayloadData
	Supported Data Types

	Additional Types of Client Agents
	XML Client Agent
	Generic SOAP Servlet

	Accessing Services without Client Agents
	Using J2EE to Call the Foundation Server EJB
	Using the Foundation Server SocketGatewayService

	Configuring the Gateway Service
	processRequest Method: Client Agent vs. Service
	ClientAgentHelper

	Building the Client Application
	Implementing a Callback
	Implementing a Service to Service Call
	Chordiant Resource Manager
	Resource Manager Configuration
	Configuring for Multiple Data Sources

	Using the Factory Methods

	CustomObjects and the CustomObjectHelper
	CustomObject Requirements and Features
	CustomObjectHelper
	Configuring CustomObjects
	Managing CustomObjects

	The ServiceControl Interface

	Chordiant Persistence Server
	The Development Cycle
	Persistence Server Process Flow

	Data Accessor Overview
	Interface Notation
	Points
	Sets
	Rays
	Segments

	Data Access Methods
	Performance Tip for Updating Data

	Global Unique Identifier (GUID) Generation
	Specifying the GUID
	Business Object Criteria

	Optimistic and Pessimistic Locking
	Optimistic Locking
	Pessimistic Locking

	Optimistic and Pessimistic Locking in One Model
	Caution: Two Locking Strategies on Same Data
	Optimistic and Pessimistic Locking API
	Examples of Optimistic and Pessimistic Locking

	Order By Interface
	Count Interface
	Performing Transactions
	Creating Bean Managed Transactions
	Performing Container Managed Transactions

	Performing Joins
	CLOB Support

	The Resource Manager and Persistence
	The Lock Manager
	Configuring the Lock Manager
	Client Interface to the Lock Manager

	Data Type Support
	Understanding Object to File Support

	Configuring WebSphere MQ Persistence
	Example of Using Persistence Server
	Chordiant Persistence Server and XSL Stylesheets

	Chordiant Event Server
	Event Server Components
	Understanding the Execution Flow
	Outbound Messages
	Inbound Messages
	Security and Inbound Messages
	Errors and Inbound Messages

	Directing Outbound Messages to Queues and Topics
	Accessing Messages in Queues and Topics
	Creating Additional MDBs

	Security
	Security Elements
	Authentication
	Authorization
	Levels of Security and Principal Identifiers
	Objects Under Security Control
	Access Control Lists and Entities
	Security Resolution

	Special Objects
	Special User
	Special Roles
	Special Object
	Security Access to Non-Existent Objects

	Security Architecture
	Using the Security Manager Service
	APIs for Authenticating Users
	APIs for Authorizing Users
	Managing Access Control Lists and Entities
	Managing Business Services as Resources
	Adding a New Service as a Resource

	Configuring SecurityManager.xml
	Synchronizing Cache Across Clusters with JMS
	System Security
	Understanding Interactions Between Security Manager and Authentication Handler
	Creating an Authentication Token
	Validating an Authentication Token

	Customizing the Authentication Handler
	Customizing the Authentication Token

	Migrating Existing Security Configurations

	Request Server
	The Main Components
	The Execution Flow
	Understanding Request Context Mapping
	Application Logic and Presentation Resources
	Exploring the Request Context Map
	Request Context Mapping Execution Flow
	Understanding Selectors and the Selectors Helper
	Exploring the Parts of a Selector
	Deferred Presentation Resource Mapping
	Building Selectors

	Understanding the Selectors Helper
	HashTable Examples

	Understanding the Device Context Mapper Helper

	Exploring the Primary Classes
	Using the ChordiantServletBaseClass
	Using the Session Helper
	Using the Login Helper

	Understanding Application Logic Results
	Examining the XML Instance Document

	Understanding Exception Handling
	Building Web Applications
	Understanding Developer Goals
	Example of Building an Application Logic Resource

	Integrating Foundation Server with Chordiant Interaction Server

	Network Presence
	Contents of the Network Presence in the Browser
	Establishing a Network Presence
	Register and Deregister Requests
	The Applet HTML Frame
	JavaScript-Function Event Handlers
	Serialized Events

	Payload Data
	MSXML Parser

	Security and Network Presence
	Browser Security
	Choosing a Signed Network Presence Plug-In
	Modifying the java.policy File
	Additional Scenarios Requiring Security Privileges

	Index

